]> git.gir.st - tmk_keyboard.git/blob - protocol/lufa/LUFA-git/Bootloaders/CDC/BootloaderCDC.c
Squashed 'tmk_core/' changes from d5c5ac6..8da1898
[tmk_keyboard.git] / protocol / lufa / LUFA-git / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
76 /* Disable JTAG debugging */
77 JTAG_DISABLE();
78
79 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
80 PORTF |= (1 << 4);
81 Delay_MS(10);
82
83 /* If the TCK pin is not jumpered to ground, start the user application instead */
84 JumpToApplication |= ((PINF & (1 << 4)) != 0);
85
86 /* Re-enable JTAG debugging */
87 JTAG_ENABLE();
88 #endif
89
90 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
91 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
92 JumpToApplication |= true;
93
94 /* If a request has been made to jump to the user application, honor it */
95 if (JumpToApplication)
96 {
97 /* Turn off the watchdog */
98 MCUSR &= ~(1<<WDRF);
99 wdt_disable();
100
101 /* Clear the boot key and jump to the user application */
102 MagicBootKey = 0;
103
104 // cppcheck-suppress constStatement
105 ((void (*)(void))0x0000)();
106 }
107 }
108
109 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
110 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
111 * the loaded application code.
112 */
113 int main(void)
114 {
115 /* Setup hardware required for the bootloader */
116 SetupHardware();
117
118 /* Turn on first LED on the board to indicate that the bootloader has started */
119 LEDs_SetAllLEDs(LEDS_LED1);
120
121 /* Enable global interrupts so that the USB stack can function */
122 GlobalInterruptEnable();
123
124 while (RunBootloader)
125 {
126 CDC_Task();
127 USB_USBTask();
128 }
129
130 /* Disconnect from the host - USB interface will be reset later along with the AVR */
131 USB_Detach();
132
133 /* Unlock the forced application start mode of the bootloader if it is restarted */
134 MagicBootKey = MAGIC_BOOT_KEY;
135
136 /* Enable the watchdog and force a timeout to reset the AVR */
137 wdt_enable(WDTO_250MS);
138
139 for (;;);
140 }
141
142 /** Configures all hardware required for the bootloader. */
143 static void SetupHardware(void)
144 {
145 /* Disable watchdog if enabled by bootloader/fuses */
146 MCUSR &= ~(1 << WDRF);
147 wdt_disable();
148
149 /* Disable clock division */
150 clock_prescale_set(clock_div_1);
151
152 /* Relocate the interrupt vector table to the bootloader section */
153 MCUCR = (1 << IVCE);
154 MCUCR = (1 << IVSEL);
155
156 /* Initialize the USB and other board hardware drivers */
157 USB_Init();
158 LEDs_Init();
159
160 /* Bootloader active LED toggle timer initialization */
161 TIMSK1 = (1 << TOIE1);
162 TCCR1B = ((1 << CS11) | (1 << CS10));
163 }
164
165 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
166 ISR(TIMER1_OVF_vect, ISR_BLOCK)
167 {
168 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
169 }
170
171 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
172 * to relay data to and from the attached USB host.
173 */
174 void EVENT_USB_Device_ConfigurationChanged(void)
175 {
176 /* Setup CDC Notification, Rx and Tx Endpoints */
177 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
178 CDC_NOTIFICATION_EPSIZE, 1);
179
180 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
181
182 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
183 }
184
185 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
186 * the device from the USB host before passing along unhandled control requests to the library for processing
187 * internally.
188 */
189 void EVENT_USB_Device_ControlRequest(void)
190 {
191 /* Ignore any requests that aren't directed to the CDC interface */
192 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
193 (REQTYPE_CLASS | REQREC_INTERFACE))
194 {
195 return;
196 }
197
198 /* Activity - toggle indicator LEDs */
199 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
200
201 /* Process CDC specific control requests */
202 switch (USB_ControlRequest.bRequest)
203 {
204 case CDC_REQ_GetLineEncoding:
205 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
206 {
207 Endpoint_ClearSETUP();
208
209 /* Write the line coding data to the control endpoint */
210 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
211 Endpoint_ClearOUT();
212 }
213
214 break;
215 case CDC_REQ_SetLineEncoding:
216 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
217 {
218 Endpoint_ClearSETUP();
219
220 /* Read the line coding data in from the host into the global struct */
221 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
222 Endpoint_ClearIN();
223 }
224
225 break;
226 case CDC_REQ_SetControlLineState:
227 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
228 {
229 Endpoint_ClearSETUP();
230 Endpoint_ClearStatusStage();
231 }
232
233 break;
234 }
235 }
236
237 #if !defined(NO_BLOCK_SUPPORT)
238 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
239 * on the AVR109 protocol command issued.
240 *
241 * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
242 */
243 static void ReadWriteMemoryBlock(const uint8_t Command)
244 {
245 uint16_t BlockSize;
246 char MemoryType;
247
248 uint8_t HighByte = 0;
249 uint8_t LowByte = 0;
250
251 BlockSize = (FetchNextCommandByte() << 8);
252 BlockSize |= FetchNextCommandByte();
253
254 MemoryType = FetchNextCommandByte();
255
256 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
257 {
258 /* Send error byte back to the host */
259 WriteNextResponseByte('?');
260
261 return;
262 }
263
264 /* Check if command is to read a memory block */
265 if (Command == AVR109_COMMAND_BlockRead)
266 {
267 /* Re-enable RWW section */
268 boot_rww_enable();
269
270 while (BlockSize--)
271 {
272 if (MemoryType == MEMORY_TYPE_FLASH)
273 {
274 /* Read the next FLASH byte from the current FLASH page */
275 #if (FLASHEND > 0xFFFF)
276 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
277 #else
278 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
279 #endif
280
281 /* If both bytes in current word have been read, increment the address counter */
282 if (HighByte)
283 CurrAddress += 2;
284
285 HighByte = !HighByte;
286 }
287 else
288 {
289 /* Read the next EEPROM byte into the endpoint */
290 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
291
292 /* Increment the address counter after use */
293 CurrAddress += 2;
294 }
295 }
296 }
297 else
298 {
299 uint32_t PageStartAddress = CurrAddress;
300
301 if (MemoryType == MEMORY_TYPE_FLASH)
302 {
303 boot_page_erase(PageStartAddress);
304 boot_spm_busy_wait();
305 }
306
307 while (BlockSize--)
308 {
309 if (MemoryType == MEMORY_TYPE_FLASH)
310 {
311 /* If both bytes in current word have been written, increment the address counter */
312 if (HighByte)
313 {
314 /* Write the next FLASH word to the current FLASH page */
315 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
316
317 /* Increment the address counter after use */
318 CurrAddress += 2;
319 }
320 else
321 {
322 LowByte = FetchNextCommandByte();
323 }
324
325 HighByte = !HighByte;
326 }
327 else
328 {
329 /* Write the next EEPROM byte from the endpoint */
330 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
331
332 /* Increment the address counter after use */
333 CurrAddress += 2;
334 }
335 }
336
337 /* If in FLASH programming mode, commit the page after writing */
338 if (MemoryType == MEMORY_TYPE_FLASH)
339 {
340 /* Commit the flash page to memory */
341 boot_page_write(PageStartAddress);
342
343 /* Wait until write operation has completed */
344 boot_spm_busy_wait();
345 }
346
347 /* Send response byte back to the host */
348 WriteNextResponseByte('\r');
349 }
350 }
351 #endif
352
353 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
354 * to allow reception of the next data packet from the host.
355 *
356 * \return Next received byte from the host in the CDC data OUT endpoint
357 */
358 static uint8_t FetchNextCommandByte(void)
359 {
360 /* Select the OUT endpoint so that the next data byte can be read */
361 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
362
363 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
364 while (!(Endpoint_IsReadWriteAllowed()))
365 {
366 Endpoint_ClearOUT();
367
368 while (!(Endpoint_IsOUTReceived()))
369 {
370 if (USB_DeviceState == DEVICE_STATE_Unattached)
371 return 0;
372 }
373 }
374
375 /* Fetch the next byte from the OUT endpoint */
376 return Endpoint_Read_8();
377 }
378
379 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
380 * bank when full ready for the next byte in the packet to the host.
381 *
382 * \param[in] Response Next response byte to send to the host
383 */
384 static void WriteNextResponseByte(const uint8_t Response)
385 {
386 /* Select the IN endpoint so that the next data byte can be written */
387 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
388
389 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
390 if (!(Endpoint_IsReadWriteAllowed()))
391 {
392 Endpoint_ClearIN();
393
394 while (!(Endpoint_IsINReady()))
395 {
396 if (USB_DeviceState == DEVICE_STATE_Unattached)
397 return;
398 }
399 }
400
401 /* Write the next byte to the IN endpoint */
402 Endpoint_Write_8(Response);
403 }
404
405 /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
406 * and send the appropriate response back to the host.
407 */
408 static void CDC_Task(void)
409 {
410 /* Select the OUT endpoint */
411 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
412
413 /* Check if endpoint has a command in it sent from the host */
414 if (!(Endpoint_IsOUTReceived()))
415 return;
416
417 /* Read in the bootloader command (first byte sent from host) */
418 uint8_t Command = FetchNextCommandByte();
419
420 if (Command == AVR109_COMMAND_ExitBootloader)
421 {
422 RunBootloader = false;
423
424 /* Send confirmation byte back to the host */
425 WriteNextResponseByte('\r');
426 }
427 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
428 (Command == AVR109_COMMAND_SelectDeviceType))
429 {
430 FetchNextCommandByte();
431
432 /* Send confirmation byte back to the host */
433 WriteNextResponseByte('\r');
434 }
435 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
436 {
437 /* Send confirmation byte back to the host */
438 WriteNextResponseByte('\r');
439 }
440 else if (Command == AVR109_COMMAND_ReadPartCode)
441 {
442 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
443 WriteNextResponseByte(0x44);
444 WriteNextResponseByte(0x00);
445 }
446 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
447 {
448 /* Indicate auto-address increment is supported */
449 WriteNextResponseByte('Y');
450 }
451 else if (Command == AVR109_COMMAND_SetCurrentAddress)
452 {
453 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
454 CurrAddress = (FetchNextCommandByte() << 9);
455 CurrAddress |= (FetchNextCommandByte() << 1);
456
457 /* Send confirmation byte back to the host */
458 WriteNextResponseByte('\r');
459 }
460 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
461 {
462 /* Indicate serial programmer back to the host */
463 WriteNextResponseByte('S');
464 }
465 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
466 {
467 /* Write the 7-byte software identifier to the endpoint */
468 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
469 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
470 }
471 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
472 {
473 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
474 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
475 }
476 else if (Command == AVR109_COMMAND_ReadSignature)
477 {
478 WriteNextResponseByte(AVR_SIGNATURE_3);
479 WriteNextResponseByte(AVR_SIGNATURE_2);
480 WriteNextResponseByte(AVR_SIGNATURE_1);
481 }
482 else if (Command == AVR109_COMMAND_EraseFLASH)
483 {
484 /* Clear the application section of flash */
485 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
486 {
487 boot_page_erase(CurrFlashAddress);
488 boot_spm_busy_wait();
489 boot_page_write(CurrFlashAddress);
490 boot_spm_busy_wait();
491 }
492
493 /* Send confirmation byte back to the host */
494 WriteNextResponseByte('\r');
495 }
496 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
497 else if (Command == AVR109_COMMAND_WriteLockbits)
498 {
499 /* Set the lock bits to those given by the host */
500 boot_lock_bits_set(FetchNextCommandByte());
501
502 /* Send confirmation byte back to the host */
503 WriteNextResponseByte('\r');
504 }
505 #endif
506 else if (Command == AVR109_COMMAND_ReadLockbits)
507 {
508 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
509 }
510 else if (Command == AVR109_COMMAND_ReadLowFuses)
511 {
512 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
513 }
514 else if (Command == AVR109_COMMAND_ReadHighFuses)
515 {
516 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
517 }
518 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
519 {
520 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
521 }
522 #if !defined(NO_BLOCK_SUPPORT)
523 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
524 {
525 WriteNextResponseByte('Y');
526
527 /* Send block size to the host */
528 WriteNextResponseByte(SPM_PAGESIZE >> 8);
529 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
530 }
531 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
532 {
533 /* Delegate the block write/read to a separate function for clarity */
534 ReadWriteMemoryBlock(Command);
535 }
536 #endif
537 #if !defined(NO_FLASH_BYTE_SUPPORT)
538 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
539 {
540 /* Write the high byte to the current flash page */
541 boot_page_fill(CurrAddress, FetchNextCommandByte());
542
543 /* Send confirmation byte back to the host */
544 WriteNextResponseByte('\r');
545 }
546 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
547 {
548 /* Write the low byte to the current flash page */
549 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
550
551 /* Increment the address */
552 CurrAddress += 2;
553
554 /* Send confirmation byte back to the host */
555 WriteNextResponseByte('\r');
556 }
557 else if (Command == AVR109_COMMAND_WriteFlashPage)
558 {
559 /* Commit the flash page to memory */
560 boot_page_write(CurrAddress);
561
562 /* Wait until write operation has completed */
563 boot_spm_busy_wait();
564
565 /* Send confirmation byte back to the host */
566 WriteNextResponseByte('\r');
567 }
568 else if (Command == AVR109_COMMAND_ReadFLASHWord)
569 {
570 #if (FLASHEND > 0xFFFF)
571 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
572 #else
573 uint16_t ProgramWord = pgm_read_word(CurrAddress);
574 #endif
575
576 WriteNextResponseByte(ProgramWord >> 8);
577 WriteNextResponseByte(ProgramWord & 0xFF);
578 }
579 #endif
580 #if !defined(NO_EEPROM_BYTE_SUPPORT)
581 else if (Command == AVR109_COMMAND_WriteEEPROM)
582 {
583 /* Read the byte from the endpoint and write it to the EEPROM */
584 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
585
586 /* Increment the address after use */
587 CurrAddress += 2;
588
589 /* Send confirmation byte back to the host */
590 WriteNextResponseByte('\r');
591 }
592 else if (Command == AVR109_COMMAND_ReadEEPROM)
593 {
594 /* Read the EEPROM byte and write it to the endpoint */
595 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
596
597 /* Increment the address after use */
598 CurrAddress += 2;
599 }
600 #endif
601 else if (Command != AVR109_COMMAND_Sync)
602 {
603 /* Unknown (non-sync) command, return fail code */
604 WriteNextResponseByte('?');
605 }
606
607 /* Select the IN endpoint */
608 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
609
610 /* Remember if the endpoint is completely full before clearing it */
611 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
612
613 /* Send the endpoint data to the host */
614 Endpoint_ClearIN();
615
616 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
617 if (IsEndpointFull)
618 {
619 while (!(Endpoint_IsINReady()))
620 {
621 if (USB_DeviceState == DEVICE_STATE_Unattached)
622 return;
623 }
624
625 Endpoint_ClearIN();
626 }
627
628 /* Wait until the data has been sent to the host */
629 while (!(Endpoint_IsINReady()))
630 {
631 if (USB_DeviceState == DEVICE_STATE_Unattached)
632 return;
633 }
634
635 /* Select the OUT endpoint */
636 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
637
638 /* Acknowledge the command from the host */
639 Endpoint_ClearOUT();
640 }
641
Imprint / Impressum