]> git.gir.st - tmk_keyboard.git/blob - protocol/lufa/LUFA-git/Bootloaders/DFU/BootloaderDFU.c
Squashed 'tmk_core/' changes from d5c5ac6..8da1898
[tmk_keyboard.git] / protocol / lufa / LUFA-git / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint16_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 bool JumpToApplication = false;
110
111 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
112 /* Disable JTAG debugging */
113 JTAG_DISABLE();
114
115 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
116 PORTF |= (1 << 4);
117 Delay_MS(10);
118
119 /* If the TCK pin is not jumpered to ground, start the user application instead */
120 JumpToApplication |= ((PINF & (1 << 4)) != 0);
121
122 /* Re-enable JTAG debugging */
123 JTAG_ENABLE();
124 #endif
125
126 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
127 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
128 JumpToApplication |= true;
129
130 /* If a request has been made to jump to the user application, honor it */
131 if (JumpToApplication)
132 {
133 /* Turn off the watchdog */
134 MCUSR &= ~(1<<WDRF);
135 wdt_disable();
136
137 /* Clear the boot key and jump to the user application */
138 MagicBootKey = 0;
139
140 // cppcheck-suppress constStatement
141 ((void (*)(void))0x0000)();
142 }
143 }
144
145 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
146 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
147 * the loaded application code.
148 */
149 int main(void)
150 {
151 /* Configure hardware required by the bootloader */
152 SetupHardware();
153
154 /* Turn on first LED on the board to indicate that the bootloader has started */
155 LEDs_SetAllLEDs(LEDS_LED1);
156
157 /* Enable global interrupts so that the USB stack can function */
158 GlobalInterruptEnable();
159
160 /* Run the USB management task while the bootloader is supposed to be running */
161 while (RunBootloader || WaitForExit)
162 USB_USBTask();
163
164 /* Reset configured hardware back to their original states for the user application */
165 ResetHardware();
166
167 /* Start the user application */
168 AppStartPtr();
169 }
170
171 /** Configures all hardware required for the bootloader. */
172 static void SetupHardware(void)
173 {
174 /* Disable watchdog if enabled by bootloader/fuses */
175 MCUSR &= ~(1 << WDRF);
176 wdt_disable();
177
178 /* Disable clock division */
179 clock_prescale_set(clock_div_1);
180
181 /* Relocate the interrupt vector table to the bootloader section */
182 MCUCR = (1 << IVCE);
183 MCUCR = (1 << IVSEL);
184
185 /* Initialize the USB and other board hardware drivers */
186 USB_Init();
187 LEDs_Init();
188
189 /* Bootloader active LED toggle timer initialization */
190 TIMSK1 = (1 << TOIE1);
191 TCCR1B = ((1 << CS11) | (1 << CS10));
192 }
193
194 /** Resets all configured hardware required for the bootloader back to their original states. */
195 static void ResetHardware(void)
196 {
197 /* Shut down the USB and other board hardware drivers */
198 USB_Disable();
199 LEDs_Disable();
200
201 /* Disable Bootloader active LED toggle timer */
202 TIMSK1 = 0;
203 TCCR1B = 0;
204
205 /* Relocate the interrupt vector table back to the application section */
206 MCUCR = (1 << IVCE);
207 MCUCR = 0;
208 }
209
210 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
211 ISR(TIMER1_OVF_vect, ISR_BLOCK)
212 {
213 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
214 }
215
216 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
217 * the device from the USB host before passing along unhandled control requests to the library for processing
218 * internally.
219 */
220 void EVENT_USB_Device_ControlRequest(void)
221 {
222 /* Ignore any requests that aren't directed to the DFU interface */
223 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
224 (REQTYPE_CLASS | REQREC_INTERFACE))
225 {
226 return;
227 }
228
229 /* Activity - toggle indicator LEDs */
230 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
231
232 /* Get the size of the command and data from the wLength value */
233 SentCommand.DataSize = USB_ControlRequest.wLength;
234
235 switch (USB_ControlRequest.bRequest)
236 {
237 case DFU_REQ_DNLOAD:
238 Endpoint_ClearSETUP();
239
240 /* Check if bootloader is waiting to terminate */
241 if (WaitForExit)
242 {
243 /* Bootloader is terminating - process last received command */
244 ProcessBootloaderCommand();
245
246 /* Indicate that the last command has now been processed - free to exit bootloader */
247 WaitForExit = false;
248 }
249
250 /* If the request has a data stage, load it into the command struct */
251 if (SentCommand.DataSize)
252 {
253 while (!(Endpoint_IsOUTReceived()))
254 {
255 if (USB_DeviceState == DEVICE_STATE_Unattached)
256 return;
257 }
258
259 /* First byte of the data stage is the DNLOAD request's command */
260 SentCommand.Command = Endpoint_Read_8();
261
262 /* One byte of the data stage is the command, so subtract it from the total data bytes */
263 SentCommand.DataSize--;
264
265 /* Load in the rest of the data stage as command parameters */
266 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
267 Endpoint_BytesInEndpoint(); DataByte++)
268 {
269 SentCommand.Data[DataByte] = Endpoint_Read_8();
270 SentCommand.DataSize--;
271 }
272
273 /* Process the command */
274 ProcessBootloaderCommand();
275 }
276
277 /* Check if currently downloading firmware */
278 if (DFU_State == dfuDNLOAD_IDLE)
279 {
280 if (!(SentCommand.DataSize))
281 {
282 DFU_State = dfuIDLE;
283 }
284 else
285 {
286 /* Throw away the filler bytes before the start of the firmware */
287 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
288
289 /* Throw away the packet alignment filler bytes before the start of the firmware */
290 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
291
292 /* Calculate the number of bytes remaining to be written */
293 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
294
295 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
296 {
297 /* Calculate the number of words to be written from the number of bytes to be written */
298 uint16_t WordsRemaining = (BytesRemaining >> 1);
299
300 union
301 {
302 uint16_t Words[2];
303 uint32_t Long;
304 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
305
306 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
307 uint8_t WordsInFlashPage = 0;
308
309 while (WordsRemaining--)
310 {
311 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
312 if (!(Endpoint_BytesInEndpoint()))
313 {
314 Endpoint_ClearOUT();
315
316 while (!(Endpoint_IsOUTReceived()))
317 {
318 if (USB_DeviceState == DEVICE_STATE_Unattached)
319 return;
320 }
321 }
322
323 /* Write the next word into the current flash page */
324 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
325
326 /* Adjust counters */
327 WordsInFlashPage += 1;
328 CurrFlashAddress.Long += 2;
329
330 /* See if an entire page has been written to the flash page buffer */
331 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
332 {
333 /* Commit the flash page to memory */
334 boot_page_write(CurrFlashPageStartAddress);
335 boot_spm_busy_wait();
336
337 /* Check if programming incomplete */
338 if (WordsRemaining)
339 {
340 CurrFlashPageStartAddress = CurrFlashAddress.Long;
341 WordsInFlashPage = 0;
342
343 /* Erase next page's temp buffer */
344 boot_page_erase(CurrFlashAddress.Long);
345 boot_spm_busy_wait();
346 }
347 }
348 }
349
350 /* Once programming complete, start address equals the end address */
351 StartAddr = EndAddr;
352
353 /* Re-enable the RWW section of flash */
354 boot_rww_enable();
355 }
356 else // Write EEPROM
357 {
358 while (BytesRemaining--)
359 {
360 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
361 if (!(Endpoint_BytesInEndpoint()))
362 {
363 Endpoint_ClearOUT();
364
365 while (!(Endpoint_IsOUTReceived()))
366 {
367 if (USB_DeviceState == DEVICE_STATE_Unattached)
368 return;
369 }
370 }
371
372 /* Read the byte from the USB interface and write to to the EEPROM */
373 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
374
375 /* Adjust counters */
376 StartAddr++;
377 }
378 }
379
380 /* Throw away the currently unused DFU file suffix */
381 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
382 }
383 }
384
385 Endpoint_ClearOUT();
386
387 Endpoint_ClearStatusStage();
388
389 break;
390 case DFU_REQ_UPLOAD:
391 Endpoint_ClearSETUP();
392
393 while (!(Endpoint_IsINReady()))
394 {
395 if (USB_DeviceState == DEVICE_STATE_Unattached)
396 return;
397 }
398
399 if (DFU_State != dfuUPLOAD_IDLE)
400 {
401 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
402 {
403 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
404 that the memory isn't blank, and the host is requesting the first non-blank address */
405 Endpoint_Write_16_LE(StartAddr);
406 }
407 else
408 {
409 /* Idle state upload - send response to last issued command */
410 Endpoint_Write_8(ResponseByte);
411 }
412 }
413 else
414 {
415 /* Determine the number of bytes remaining in the current block */
416 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
417
418 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
419 {
420 /* Calculate the number of words to be written from the number of bytes to be written */
421 uint16_t WordsRemaining = (BytesRemaining >> 1);
422
423 union
424 {
425 uint16_t Words[2];
426 uint32_t Long;
427 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
428
429 while (WordsRemaining--)
430 {
431 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
432 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
433 {
434 Endpoint_ClearIN();
435
436 while (!(Endpoint_IsINReady()))
437 {
438 if (USB_DeviceState == DEVICE_STATE_Unattached)
439 return;
440 }
441 }
442
443 /* Read the flash word and send it via USB to the host */
444 #if (FLASHEND > 0xFFFF)
445 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
446 #else
447 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
448 #endif
449
450 /* Adjust counters */
451 CurrFlashAddress.Long += 2;
452 }
453
454 /* Once reading is complete, start address equals the end address */
455 StartAddr = EndAddr;
456 }
457 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
458 {
459 while (BytesRemaining--)
460 {
461 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
462 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
463 {
464 Endpoint_ClearIN();
465
466 while (!(Endpoint_IsINReady()))
467 {
468 if (USB_DeviceState == DEVICE_STATE_Unattached)
469 return;
470 }
471 }
472
473 /* Read the EEPROM byte and send it via USB to the host */
474 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
475
476 /* Adjust counters */
477 StartAddr++;
478 }
479 }
480
481 /* Return to idle state */
482 DFU_State = dfuIDLE;
483 }
484
485 Endpoint_ClearIN();
486
487 Endpoint_ClearStatusStage();
488 break;
489 case DFU_REQ_GETSTATUS:
490 Endpoint_ClearSETUP();
491
492 while (!(Endpoint_IsINReady()))
493 {
494 if (USB_DeviceState == DEVICE_STATE_Unattached)
495 return;
496 }
497
498 /* Write 8-bit status value */
499 Endpoint_Write_8(DFU_Status);
500
501 /* Write 24-bit poll timeout value */
502 Endpoint_Write_8(0);
503 Endpoint_Write_16_LE(0);
504
505 /* Write 8-bit state value */
506 Endpoint_Write_8(DFU_State);
507
508 /* Write 8-bit state string ID number */
509 Endpoint_Write_8(0);
510
511 Endpoint_ClearIN();
512
513 Endpoint_ClearStatusStage();
514 break;
515 case DFU_REQ_CLRSTATUS:
516 Endpoint_ClearSETUP();
517
518 /* Reset the status value variable to the default OK status */
519 DFU_Status = OK;
520
521 Endpoint_ClearStatusStage();
522 break;
523 case DFU_REQ_GETSTATE:
524 Endpoint_ClearSETUP();
525
526 while (!(Endpoint_IsINReady()))
527 {
528 if (USB_DeviceState == DEVICE_STATE_Unattached)
529 return;
530 }
531
532 /* Write the current device state to the endpoint */
533 Endpoint_Write_8(DFU_State);
534
535 Endpoint_ClearIN();
536
537 Endpoint_ClearStatusStage();
538 break;
539 case DFU_REQ_ABORT:
540 Endpoint_ClearSETUP();
541
542 /* Reset the current state variable to the default idle state */
543 DFU_State = dfuIDLE;
544
545 Endpoint_ClearStatusStage();
546 break;
547 }
548 }
549
550 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
551 * discard unused bytes in the stream from the host, including the memory program block suffix.
552 *
553 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
554 */
555 static void DiscardFillerBytes(uint8_t NumberOfBytes)
556 {
557 while (NumberOfBytes--)
558 {
559 if (!(Endpoint_BytesInEndpoint()))
560 {
561 Endpoint_ClearOUT();
562
563 /* Wait until next data packet received */
564 while (!(Endpoint_IsOUTReceived()))
565 {
566 if (USB_DeviceState == DEVICE_STATE_Unattached)
567 return;
568 }
569 }
570 else
571 {
572 Endpoint_Discard_8();
573 }
574 }
575 }
576
577 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
578 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
579 * appropriate handler function.
580 */
581 static void ProcessBootloaderCommand(void)
582 {
583 /* Check if device is in secure mode */
584 if (IsSecure)
585 {
586 /* Don't process command unless it is a READ or chip erase command */
587 if (!(((SentCommand.Command == COMMAND_WRITE) &&
588 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
589 (SentCommand.Command == COMMAND_READ)))
590 {
591 /* Set the state and status variables to indicate the error */
592 DFU_State = dfuERROR;
593 DFU_Status = errWRITE;
594
595 /* Stall command */
596 Endpoint_StallTransaction();
597
598 /* Don't process the command */
599 return;
600 }
601 }
602
603 /* Dispatch the required command processing routine based on the command type */
604 switch (SentCommand.Command)
605 {
606 case COMMAND_PROG_START:
607 ProcessMemProgCommand();
608 break;
609 case COMMAND_DISP_DATA:
610 ProcessMemReadCommand();
611 break;
612 case COMMAND_WRITE:
613 ProcessWriteCommand();
614 break;
615 case COMMAND_READ:
616 ProcessReadCommand();
617 break;
618 case COMMAND_CHANGE_BASE_ADDR:
619 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
620 Flash64KBPage = SentCommand.Data[2];
621
622 break;
623 }
624 }
625
626 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
627 * in the StartAddr and EndAddr global variables.
628 */
629 static void LoadStartEndAddresses(void)
630 {
631 union
632 {
633 uint8_t Bytes[2];
634 uint16_t Word;
635 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
636 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
637
638 /* Load in the start and ending read addresses from the sent data packet */
639 StartAddr = Address[0].Word;
640 EndAddr = Address[1].Word;
641 }
642
643 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
644 * to write subsequent data from the host into the specified memory.
645 */
646 static void ProcessMemProgCommand(void)
647 {
648 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
649 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
650 {
651 /* Load in the start and ending read addresses */
652 LoadStartEndAddresses();
653
654 /* If FLASH is being written to, we need to pre-erase the first page to write to */
655 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
656 {
657 union
658 {
659 uint16_t Words[2];
660 uint32_t Long;
661 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
662
663 /* Erase the current page's temp buffer */
664 boot_page_erase(CurrFlashAddress.Long);
665 boot_spm_busy_wait();
666 }
667
668 /* Set the state so that the next DNLOAD requests reads in the firmware */
669 DFU_State = dfuDNLOAD_IDLE;
670 }
671 }
672
673 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
674 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
675 * blank check command.
676 */
677 static void ProcessMemReadCommand(void)
678 {
679 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
680 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
681 {
682 /* Load in the start and ending read addresses */
683 LoadStartEndAddresses();
684
685 /* Set the state so that the next UPLOAD requests read out the firmware */
686 DFU_State = dfuUPLOAD_IDLE;
687 }
688 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
689 {
690 uint32_t CurrFlashAddress = 0;
691
692 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
693 {
694 /* Check if the current byte is not blank */
695 #if (FLASHEND > 0xFFFF)
696 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
697 #else
698 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
699 #endif
700 {
701 /* Save the location of the first non-blank byte for response back to the host */
702 Flash64KBPage = (CurrFlashAddress >> 16);
703 StartAddr = CurrFlashAddress;
704
705 /* Set state and status variables to the appropriate error values */
706 DFU_State = dfuERROR;
707 DFU_Status = errCHECK_ERASED;
708
709 break;
710 }
711
712 CurrFlashAddress++;
713 }
714 }
715 }
716
717 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
718 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
719 */
720 static void ProcessWriteCommand(void)
721 {
722 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
723 {
724 /* Indicate that the bootloader is terminating */
725 WaitForExit = true;
726
727 /* Check if data supplied for the Start Program command - no data executes the program */
728 if (SentCommand.DataSize)
729 {
730 if (SentCommand.Data[1] == 0x01) // Start via jump
731 {
732 union
733 {
734 uint8_t Bytes[2];
735 AppPtr_t FuncPtr;
736 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
737
738 /* Load in the jump address into the application start address pointer */
739 AppStartPtr = Address.FuncPtr;
740 }
741 }
742 else
743 {
744 if (SentCommand.Data[1] == 0x00) // Start via watchdog
745 {
746 /* Unlock the forced application start mode of the bootloader if it is restarted */
747 MagicBootKey = MAGIC_BOOT_KEY;
748
749 /* Start the watchdog to reset the AVR once the communications are finalized */
750 wdt_enable(WDTO_250MS);
751 }
752 else // Start via jump
753 {
754 /* Set the flag to terminate the bootloader at next opportunity */
755 RunBootloader = false;
756 }
757 }
758 }
759 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
760 {
761 uint32_t CurrFlashAddress = 0;
762
763 /* Clear the application section of flash */
764 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
765 {
766 boot_page_erase(CurrFlashAddress);
767 boot_spm_busy_wait();
768 boot_page_write(CurrFlashAddress);
769 boot_spm_busy_wait();
770
771 CurrFlashAddress += SPM_PAGESIZE;
772 }
773
774 /* Re-enable the RWW section of flash as writing to the flash locks it out */
775 boot_rww_enable();
776
777 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
778 IsSecure = false;
779 }
780 }
781
782 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
783 * commands such as device signature and bootloader version retrieval.
784 */
785 static void ProcessReadCommand(void)
786 {
787 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
788 const uint8_t SignatureInfo[4] = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
789
790 uint8_t DataIndexToRead = SentCommand.Data[1];
791
792 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
793 {
794 ResponseByte = BootloaderInfo[DataIndexToRead];
795 }
796 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
797 {
798 if (DataIndexToRead < 0x60)
799 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
800 else
801 ResponseByte = SignatureInfo[DataIndexToRead - 0x60 + 3];
802 }
803 }
804
Imprint / Impressum