]> git.gir.st - tmk_keyboard.git/blob - keyboard/infinity/mbed-infinity/USBHAL_KL25Z.cpp
Merge commit '22b6e15a179031afb7c3534cf7b109b0668b602c'
[tmk_keyboard.git] / keyboard / infinity / mbed-infinity / USBHAL_KL25Z.cpp
1 /* Copyright (c) 2010-2011 mbed.org, MIT License
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
4 * and associated documentation files (the "Software"), to deal in the Software without
5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
7 * Software is furnished to do so, subject to the following conditions:
8 *
9 * The above copyright notice and this permission notice shall be included in all copies or
10 * substantial portions of the Software.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
17 */
18
19 #if defined(TARGET_KL25Z) | defined(TARGET_KL43Z) | defined(TARGET_KL46Z) | defined(TARGET_K20D50M) | defined(TARGET_K64F) | defined(TARGET_K22F)
20
21 #include "USBHAL.h"
22
23 USBHAL * USBHAL::instance;
24
25 static volatile int epComplete = 0;
26
27 // Convert physical endpoint number to register bit
28 #define EP(endpoint) (1<<(endpoint))
29
30 // Convert physical to logical
31 #define PHY_TO_LOG(endpoint) ((endpoint)>>1)
32
33 // Get endpoint direction
34 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
35 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
36
37 #define BD_OWN_MASK (1<<7)
38 #define BD_DATA01_MASK (1<<6)
39 #define BD_KEEP_MASK (1<<5)
40 #define BD_NINC_MASK (1<<4)
41 #define BD_DTS_MASK (1<<3)
42 #define BD_STALL_MASK (1<<2)
43
44 #define TX 1
45 #define RX 0
46 #define ODD 0
47 #define EVEN 1
48 // this macro waits a physical endpoint number
49 #define EP_BDT_IDX(ep, dir, odd) (((ep * 4) + (2 * dir) + (1 * odd)))
50
51 #define SETUP_TOKEN 0x0D
52 #define IN_TOKEN 0x09
53 #define OUT_TOKEN 0x01
54 #define TOK_PID(idx) ((bdt[idx].info >> 2) & 0x0F)
55
56 // for each endpt: 8 bytes
57 typedef struct BDT {
58 uint8_t info; // BD[0:7]
59 uint8_t dummy; // RSVD: BD[8:15]
60 uint16_t byte_count; // BD[16:32]
61 uint32_t address; // Addr
62 } BDT;
63
64
65 // there are:
66 // * 16 bidirectionnal endpt -> 32 physical endpt
67 // * as there are ODD and EVEN buffer -> 32*2 bdt
68 __attribute__((__aligned__(512))) BDT bdt[NUMBER_OF_PHYSICAL_ENDPOINTS * 2];
69 uint8_t * endpoint_buffer[(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2];
70 uint8_t * endpoint_buffer_iso[2*2];
71
72 static uint8_t set_addr = 0;
73 static uint8_t addr = 0;
74
75 static uint32_t Data1 = 0x55555555;
76
77 static uint32_t frameNumber() {
78 return((USB0->FRMNUML | (USB0->FRMNUMH << 8)) & 0x07FF);
79 }
80
81 uint32_t USBHAL::endpointReadcore(uint8_t endpoint, uint8_t *buffer) {
82 return 0;
83 }
84
85 USBHAL::USBHAL(void) {
86 // Disable IRQ
87 NVIC_DisableIRQ(USB0_IRQn);
88
89 #if defined(TARGET_K64F)
90 MPU->CESR=0;
91 #endif
92 // fill in callback array
93 epCallback[0] = &USBHAL::EP1_OUT_callback;
94 epCallback[1] = &USBHAL::EP1_IN_callback;
95 epCallback[2] = &USBHAL::EP2_OUT_callback;
96 epCallback[3] = &USBHAL::EP2_IN_callback;
97 epCallback[4] = &USBHAL::EP3_OUT_callback;
98 epCallback[5] = &USBHAL::EP3_IN_callback;
99 epCallback[6] = &USBHAL::EP4_OUT_callback;
100 epCallback[7] = &USBHAL::EP4_IN_callback;
101 epCallback[8] = &USBHAL::EP5_OUT_callback;
102 epCallback[9] = &USBHAL::EP5_IN_callback;
103 epCallback[10] = &USBHAL::EP6_OUT_callback;
104 epCallback[11] = &USBHAL::EP6_IN_callback;
105 epCallback[12] = &USBHAL::EP7_OUT_callback;
106 epCallback[13] = &USBHAL::EP7_IN_callback;
107 epCallback[14] = &USBHAL::EP8_OUT_callback;
108 epCallback[15] = &USBHAL::EP8_IN_callback;
109 epCallback[16] = &USBHAL::EP9_OUT_callback;
110 epCallback[17] = &USBHAL::EP9_IN_callback;
111 epCallback[18] = &USBHAL::EP10_OUT_callback;
112 epCallback[19] = &USBHAL::EP10_IN_callback;
113 epCallback[20] = &USBHAL::EP11_OUT_callback;
114 epCallback[21] = &USBHAL::EP11_IN_callback;
115 epCallback[22] = &USBHAL::EP12_OUT_callback;
116 epCallback[23] = &USBHAL::EP12_IN_callback;
117 epCallback[24] = &USBHAL::EP13_OUT_callback;
118 epCallback[25] = &USBHAL::EP13_IN_callback;
119 epCallback[26] = &USBHAL::EP14_OUT_callback;
120 epCallback[27] = &USBHAL::EP14_IN_callback;
121 epCallback[28] = &USBHAL::EP15_OUT_callback;
122 epCallback[29] = &USBHAL::EP15_IN_callback;
123
124 #if defined(TARGET_KL43Z)
125 // enable USBFS clock
126 SIM->SCGC4 |= SIM_SCGC4_USBFS_MASK;
127
128 // enable the IRC48M clock
129 USB0->CLK_RECOVER_IRC_EN |= USB_CLK_RECOVER_IRC_EN_IRC_EN_MASK;
130
131 // enable the USB clock recovery tuning
132 USB0->CLK_RECOVER_CTRL |= USB_CLK_RECOVER_CTRL_CLOCK_RECOVER_EN_MASK;
133
134 // choose usb src clock
135 SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
136 #elif defined(TARGET_INFINITY)
137 // USB clock source: FLL
138 SIM->SOPT2 |= SIM_SOPT2_USBSRC_MASK;
139
140 // enable OTG clock
141 SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
142 #else
143 // choose usb src as PLL
144 SIM->SOPT2 &= ~SIM_SOPT2_PLLFLLSEL_MASK;
145 SIM->SOPT2 |= (SIM_SOPT2_USBSRC_MASK | (1 << SIM_SOPT2_PLLFLLSEL_SHIFT));
146
147 // enable OTG clock
148 SIM->SCGC4 |= SIM_SCGC4_USBOTG_MASK;
149 #endif
150
151 // Attach IRQ
152 instance = this;
153 NVIC_SetVector(USB0_IRQn, (uint32_t)&_usbisr);
154 NVIC_EnableIRQ(USB0_IRQn);
155
156 // USB Module Configuration
157 // Reset USB Module
158 USB0->USBTRC0 |= USB_USBTRC0_USBRESET_MASK;
159 while(USB0->USBTRC0 & USB_USBTRC0_USBRESET_MASK);
160
161 // Set BDT Base Register
162 USB0->BDTPAGE1 = (uint8_t)((uint32_t)bdt>>8);
163 USB0->BDTPAGE2 = (uint8_t)((uint32_t)bdt>>16);
164 USB0->BDTPAGE3 = (uint8_t)((uint32_t)bdt>>24);
165
166 // Clear interrupt flag
167 USB0->ISTAT = 0xff;
168
169 // USB Interrupt Enablers
170 USB0->INTEN |= USB_INTEN_TOKDNEEN_MASK |
171 USB_INTEN_SOFTOKEN_MASK |
172 USB_INTEN_ERROREN_MASK |
173 USB_INTEN_USBRSTEN_MASK;
174
175 // Disable weak pull downs
176 USB0->USBCTRL &= ~(USB_USBCTRL_PDE_MASK | USB_USBCTRL_SUSP_MASK);
177
178 USB0->USBTRC0 |= 0x40;
179 }
180
181 USBHAL::~USBHAL(void) { }
182
183 void USBHAL::connect(void) {
184 // enable USB
185 USB0->CTL |= USB_CTL_USBENSOFEN_MASK;
186 // Pull up enable
187 USB0->CONTROL |= USB_CONTROL_DPPULLUPNONOTG_MASK;
188 }
189
190 void USBHAL::disconnect(void) {
191 // disable USB
192 USB0->CTL &= ~USB_CTL_USBENSOFEN_MASK;
193 // Pull up disable
194 USB0->CONTROL &= ~USB_CONTROL_DPPULLUPNONOTG_MASK;
195
196 //Free buffers if required:
197 for (int i = 0; i<(NUMBER_OF_PHYSICAL_ENDPOINTS - 2) * 2; i++) {
198 free(endpoint_buffer[i]);
199 endpoint_buffer[i] = NULL;
200 }
201 free(endpoint_buffer_iso[2]);
202 endpoint_buffer_iso[2] = NULL;
203 free(endpoint_buffer_iso[0]);
204 endpoint_buffer_iso[0] = NULL;
205 }
206
207 void USBHAL::configureDevice(void) {
208 // not needed
209 }
210
211 void USBHAL::unconfigureDevice(void) {
212 // not needed
213 }
214
215 void USBHAL::setAddress(uint8_t address) {
216 // we don't set the address now otherwise the usb controller does not ack
217 // we set a flag instead
218 // see usbisr when an IN token is received
219 set_addr = 1;
220 addr = address;
221 }
222
223 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t flags) {
224 uint32_t handshake_flag = 0;
225 uint8_t * buf;
226
227 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
228 return false;
229 }
230
231 uint32_t log_endpoint = PHY_TO_LOG(endpoint);
232
233 if ((flags & ISOCHRONOUS) == 0) {
234 handshake_flag = USB_ENDPT_EPHSHK_MASK;
235 if (IN_EP(endpoint)) {
236 if (endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] == NULL)
237 endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)] = (uint8_t *) malloc (64*2);
238 buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, TX, ODD)][0];
239 } else {
240 if (endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] == NULL)
241 endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)] = (uint8_t *) malloc (64*2);
242 buf = &endpoint_buffer[EP_BDT_IDX(log_endpoint, RX, ODD)][0];
243 }
244 } else {
245 if (IN_EP(endpoint)) {
246 if (endpoint_buffer_iso[2] == NULL)
247 endpoint_buffer_iso[2] = (uint8_t *) malloc (1023*2);
248 buf = &endpoint_buffer_iso[2][0];
249 } else {
250 if (endpoint_buffer_iso[0] == NULL)
251 endpoint_buffer_iso[0] = (uint8_t *) malloc (1023*2);
252 buf = &endpoint_buffer_iso[0][0];
253 }
254 }
255
256 // IN endpt -> device to host (TX)
257 if (IN_EP(endpoint)) {
258 USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint)
259 USB_ENDPT_EPTXEN_MASK; // en TX (IN) tran
260 bdt[EP_BDT_IDX(log_endpoint, TX, ODD )].address = (uint32_t) buf;
261 bdt[EP_BDT_IDX(log_endpoint, TX, EVEN)].address = 0;
262 }
263 // OUT endpt -> host to device (RX)
264 else {
265 USB0->ENDPOINT[log_endpoint].ENDPT |= handshake_flag | // ep handshaking (not if iso endpoint)
266 USB_ENDPT_EPRXEN_MASK; // en RX (OUT) tran.
267 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].byte_count = maxPacket;
268 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].address = (uint32_t) buf;
269 bdt[EP_BDT_IDX(log_endpoint, RX, ODD )].info = BD_OWN_MASK | BD_DTS_MASK;
270 bdt[EP_BDT_IDX(log_endpoint, RX, EVEN)].info = 0;
271 }
272
273 Data1 |= (1 << endpoint);
274
275 return true;
276 }
277
278 // read setup packet
279 void USBHAL::EP0setup(uint8_t *buffer) {
280 uint32_t sz;
281 endpointReadResult(EP0OUT, buffer, &sz);
282 }
283
284 void USBHAL::EP0readStage(void) {
285 Data1 &= ~1UL; // set DATA0
286 bdt[0].info = (BD_DTS_MASK | BD_OWN_MASK);
287 }
288
289 void USBHAL::EP0read(void) {
290 uint32_t idx = EP_BDT_IDX(PHY_TO_LOG(EP0OUT), RX, 0);
291 bdt[idx].byte_count = MAX_PACKET_SIZE_EP0;
292 }
293
294 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
295 uint32_t sz;
296 endpointReadResult(EP0OUT, buffer, &sz);
297 return sz;
298 }
299
300 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
301 endpointWrite(EP0IN, buffer, size);
302 }
303
304 void USBHAL::EP0getWriteResult(void) {
305 }
306
307 void USBHAL::EP0stall(void) {
308 stallEndpoint(EP0OUT);
309 }
310
311 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
312 endpoint = PHY_TO_LOG(endpoint);
313 uint32_t idx = EP_BDT_IDX(endpoint, RX, 0);
314 bdt[idx].byte_count = maximumSize;
315 return EP_PENDING;
316 }
317
318 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t * buffer, uint32_t *bytesRead) {
319 uint32_t n, sz, idx, setup = 0;
320 uint8_t not_iso;
321 uint8_t * ep_buf;
322
323 uint32_t log_endpoint = PHY_TO_LOG(endpoint);
324
325 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
326 return EP_INVALID;
327 }
328
329 // if read on a IN endpoint -> error
330 if (IN_EP(endpoint)) {
331 return EP_INVALID;
332 }
333
334 idx = EP_BDT_IDX(log_endpoint, RX, 0);
335 sz = bdt[idx].byte_count;
336 not_iso = USB0->ENDPOINT[log_endpoint].ENDPT & USB_ENDPT_EPHSHK_MASK;
337
338 //for isochronous endpoint, we don't wait an interrupt
339 if ((log_endpoint != 0) && not_iso && !(epComplete & EP(endpoint))) {
340 return EP_PENDING;
341 }
342
343 if ((log_endpoint == 0) && (TOK_PID(idx) == SETUP_TOKEN)) {
344 setup = 1;
345 }
346
347 // non iso endpoint
348 if (not_iso) {
349 ep_buf = endpoint_buffer[idx];
350 } else {
351 ep_buf = endpoint_buffer_iso[0];
352 }
353
354 for (n = 0; n < sz; n++) {
355 buffer[n] = ep_buf[n];
356 }
357
358 if (((Data1 >> endpoint) & 1) == ((bdt[idx].info >> 6) & 1)) {
359 if (setup && (buffer[6] == 0)) // if no setup data stage,
360 Data1 &= ~1UL; // set DATA0
361 else
362 Data1 ^= (1 << endpoint);
363 }
364
365 if (((Data1 >> endpoint) & 1)) {
366 bdt[idx].info = BD_DTS_MASK | BD_DATA01_MASK | BD_OWN_MASK;
367 }
368 else {
369 bdt[idx].info = BD_DTS_MASK | BD_OWN_MASK;
370 }
371
372 USB0->CTL &= ~USB_CTL_TXSUSPENDTOKENBUSY_MASK;
373 *bytesRead = sz;
374
375 epComplete &= ~EP(endpoint);
376 return EP_COMPLETED;
377 }
378
379 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
380 uint32_t idx, n;
381 uint8_t * ep_buf;
382
383 if (endpoint > NUMBER_OF_PHYSICAL_ENDPOINTS - 1) {
384 return EP_INVALID;
385 }
386
387 // if write on a OUT endpoint -> error
388 if (OUT_EP(endpoint)) {
389 return EP_INVALID;
390 }
391
392 idx = EP_BDT_IDX(PHY_TO_LOG(endpoint), TX, 0);
393 bdt[idx].byte_count = size;
394
395
396 // non iso endpoint
397 if (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPHSHK_MASK) {
398 ep_buf = endpoint_buffer[idx];
399 } else {
400 ep_buf = endpoint_buffer_iso[2];
401 }
402
403 for (n = 0; n < size; n++) {
404 ep_buf[n] = data[n];
405 }
406
407 if ((Data1 >> endpoint) & 1) {
408 bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK;
409 } else {
410 bdt[idx].info = BD_OWN_MASK | BD_DTS_MASK | BD_DATA01_MASK;
411 }
412
413 Data1 ^= (1 << endpoint);
414
415 return EP_PENDING;
416 }
417
418 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
419 if (epComplete & EP(endpoint)) {
420 epComplete &= ~EP(endpoint);
421 return EP_COMPLETED;
422 }
423
424 return EP_PENDING;
425 }
426
427 void USBHAL::stallEndpoint(uint8_t endpoint) {
428 USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT |= USB_ENDPT_EPSTALL_MASK;
429 }
430
431 void USBHAL::unstallEndpoint(uint8_t endpoint) {
432 USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
433 }
434
435 bool USBHAL::getEndpointStallState(uint8_t endpoint) {
436 uint8_t stall = (USB0->ENDPOINT[PHY_TO_LOG(endpoint)].ENDPT & USB_ENDPT_EPSTALL_MASK);
437 return (stall) ? true : false;
438 }
439
440 void USBHAL::remoteWakeup(void) {
441 // [TODO]
442 }
443
444
445 void USBHAL::_usbisr(void) {
446 instance->usbisr();
447 }
448
449
450 void USBHAL::usbisr(void) {
451 uint8_t i;
452 uint8_t istat = USB0->ISTAT;
453
454 // reset interrupt
455 if (istat & USB_ISTAT_USBRST_MASK) {
456 // disable all endpt
457 for(i = 0; i < 16; i++) {
458 USB0->ENDPOINT[i].ENDPT = 0x00;
459 }
460
461 // enable control endpoint
462 realiseEndpoint(EP0OUT, MAX_PACKET_SIZE_EP0, 0);
463 realiseEndpoint(EP0IN, MAX_PACKET_SIZE_EP0, 0);
464
465 Data1 = 0x55555555;
466 USB0->CTL |= USB_CTL_ODDRST_MASK;
467
468 USB0->ISTAT = 0xFF; // clear all interrupt status flags
469 USB0->ERRSTAT = 0xFF; // clear all error flags
470 USB0->ERREN = 0xFF; // enable error interrupt sources
471 USB0->ADDR = 0x00; // set default address
472
473 return;
474 }
475
476 // resume interrupt
477 if (istat & USB_ISTAT_RESUME_MASK) {
478 USB0->ISTAT = USB_ISTAT_RESUME_MASK;
479 }
480
481 // SOF interrupt
482 if (istat & USB_ISTAT_SOFTOK_MASK) {
483 USB0->ISTAT = USB_ISTAT_SOFTOK_MASK;
484 // SOF event, read frame number
485 SOF(frameNumber());
486 }
487
488 // stall interrupt
489 if (istat & 1<<7) {
490 if (USB0->ENDPOINT[0].ENDPT & USB_ENDPT_EPSTALL_MASK)
491 USB0->ENDPOINT[0].ENDPT &= ~USB_ENDPT_EPSTALL_MASK;
492 USB0->ISTAT |= USB_ISTAT_STALL_MASK;
493 }
494
495 // token interrupt
496 if (istat & 1<<3) {
497 uint32_t num = (USB0->STAT >> 4) & 0x0F;
498 uint32_t dir = (USB0->STAT >> 3) & 0x01;
499 uint32_t ev_odd = (USB0->STAT >> 2) & 0x01;
500
501 // setup packet
502 if ((num == 0) && (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == SETUP_TOKEN)) {
503 Data1 &= ~0x02;
504 bdt[EP_BDT_IDX(0, TX, EVEN)].info &= ~BD_OWN_MASK;
505 bdt[EP_BDT_IDX(0, TX, ODD)].info &= ~BD_OWN_MASK;
506
507 // EP0 SETUP event (SETUP data received)
508 EP0setupCallback();
509
510 } else {
511 // OUT packet
512 if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == OUT_TOKEN) {
513 if (num == 0)
514 EP0out();
515 else {
516 epComplete |= (1 << EP(num));
517 if ((instance->*(epCallback[EP(num) - 2]))()) {
518 epComplete &= ~(1 << EP(num));
519 }
520 }
521 }
522
523 // IN packet
524 if (TOK_PID((EP_BDT_IDX(num, dir, ev_odd))) == IN_TOKEN) {
525 if (num == 0) {
526 EP0in();
527 if (set_addr == 1) {
528 USB0->ADDR = addr & 0x7F;
529 set_addr = 0;
530 }
531 }
532 else {
533 epComplete |= (1 << (EP(num) + 1));
534 if ((instance->*(epCallback[EP(num) + 1 - 2]))()) {
535 epComplete &= ~(1 << (EP(num) + 1));
536 }
537 }
538 }
539 }
540
541 USB0->ISTAT = USB_ISTAT_TOKDNE_MASK;
542 }
543
544 // sleep interrupt
545 if (istat & 1<<4) {
546 USB0->ISTAT |= USB_ISTAT_SLEEP_MASK;
547 }
548
549 // error interrupt
550 if (istat & USB_ISTAT_ERROR_MASK) {
551 USB0->ERRSTAT = 0xFF;
552 USB0->ISTAT |= USB_ISTAT_ERROR_MASK;
553 }
554 }
555
556
557 #endif
Imprint / Impressum