]> git.gir.st - tmk_keyboard.git/blob - protocol/usb_hid/arduino-1.0.1/cores/arduino/wiring.c
Add USB_Host_Shield_2.0 and arduino-1.0.1 in usb_hid.
[tmk_keyboard.git] / protocol / usb_hid / arduino-1.0.1 / cores / arduino / wiring.c
1 /*
2 wiring.c - Partial implementation of the Wiring API for the ATmega8.
3 Part of Arduino - http://www.arduino.cc/
4
5 Copyright (c) 2005-2006 David A. Mellis
6
7 This library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 This library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General
18 Public License along with this library; if not, write to the
19 Free Software Foundation, Inc., 59 Temple Place, Suite 330,
20 Boston, MA 02111-1307 USA
21
22 $Id$
23 */
24
25 #include "wiring_private.h"
26
27 // the prescaler is set so that timer0 ticks every 64 clock cycles, and the
28 // the overflow handler is called every 256 ticks.
29 #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
30
31 // the whole number of milliseconds per timer0 overflow
32 #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
33
34 // the fractional number of milliseconds per timer0 overflow. we shift right
35 // by three to fit these numbers into a byte. (for the clock speeds we care
36 // about - 8 and 16 MHz - this doesn't lose precision.)
37 #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
38 #define FRACT_MAX (1000 >> 3)
39
40 volatile unsigned long timer0_overflow_count = 0;
41 volatile unsigned long timer0_millis = 0;
42 static unsigned char timer0_fract = 0;
43
44 #if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
45 SIGNAL(TIM0_OVF_vect)
46 #else
47 SIGNAL(TIMER0_OVF_vect)
48 #endif
49 {
50 // copy these to local variables so they can be stored in registers
51 // (volatile variables must be read from memory on every access)
52 unsigned long m = timer0_millis;
53 unsigned char f = timer0_fract;
54
55 m += MILLIS_INC;
56 f += FRACT_INC;
57 if (f >= FRACT_MAX) {
58 f -= FRACT_MAX;
59 m += 1;
60 }
61
62 timer0_fract = f;
63 timer0_millis = m;
64 timer0_overflow_count++;
65 }
66
67 unsigned long millis()
68 {
69 unsigned long m;
70 uint8_t oldSREG = SREG;
71
72 // disable interrupts while we read timer0_millis or we might get an
73 // inconsistent value (e.g. in the middle of a write to timer0_millis)
74 cli();
75 m = timer0_millis;
76 SREG = oldSREG;
77
78 return m;
79 }
80
81 unsigned long micros() {
82 unsigned long m;
83 uint8_t oldSREG = SREG, t;
84
85 cli();
86 m = timer0_overflow_count;
87 #if defined(TCNT0)
88 t = TCNT0;
89 #elif defined(TCNT0L)
90 t = TCNT0L;
91 #else
92 #error TIMER 0 not defined
93 #endif
94
95
96 #ifdef TIFR0
97 if ((TIFR0 & _BV(TOV0)) && (t < 255))
98 m++;
99 #else
100 if ((TIFR & _BV(TOV0)) && (t < 255))
101 m++;
102 #endif
103
104 SREG = oldSREG;
105
106 return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
107 }
108
109 void delay(unsigned long ms)
110 {
111 //PORTB &= ~(1<<0);
112 uint16_t start = (uint16_t)micros();
113
114 while (ms > 0) {
115 if (((uint16_t)micros() - start) >= 1000) {
116 ms--;
117 start += 1000;
118 }
119 }
120 //PORTB |= (1<<0);
121 }
122
123 /* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
124 void delayMicroseconds(unsigned int us)
125 {
126 // calling avrlib's delay_us() function with low values (e.g. 1 or
127 // 2 microseconds) gives delays longer than desired.
128 //delay_us(us);
129 #if F_CPU >= 20000000L
130 // for the 20 MHz clock on rare Arduino boards
131
132 // for a one-microsecond delay, simply wait 2 cycle and return. The overhead
133 // of the function call yields a delay of exactly a one microsecond.
134 __asm__ __volatile__ (
135 "nop" "\n\t"
136 "nop"); //just waiting 2 cycle
137 if (--us == 0)
138 return;
139
140 // the following loop takes a 1/5 of a microsecond (4 cycles)
141 // per iteration, so execute it five times for each microsecond of
142 // delay requested.
143 us = (us<<2) + us; // x5 us
144
145 // account for the time taken in the preceeding commands.
146 us -= 2;
147
148 #elif F_CPU >= 16000000L
149 // for the 16 MHz clock on most Arduino boards
150
151 // for a one-microsecond delay, simply return. the overhead
152 // of the function call yields a delay of approximately 1 1/8 us.
153 if (--us == 0)
154 return;
155
156 // the following loop takes a quarter of a microsecond (4 cycles)
157 // per iteration, so execute it four times for each microsecond of
158 // delay requested.
159 us <<= 2;
160
161 // account for the time taken in the preceeding commands.
162 us -= 2;
163 #else
164 // for the 8 MHz internal clock on the ATmega168
165
166 // for a one- or two-microsecond delay, simply return. the overhead of
167 // the function calls takes more than two microseconds. can't just
168 // subtract two, since us is unsigned; we'd overflow.
169 if (--us == 0)
170 return;
171 if (--us == 0)
172 return;
173
174 // the following loop takes half of a microsecond (4 cycles)
175 // per iteration, so execute it twice for each microsecond of
176 // delay requested.
177 us <<= 1;
178
179 // partially compensate for the time taken by the preceeding commands.
180 // we can't subtract any more than this or we'd overflow w/ small delays.
181 us--;
182 #endif
183
184 // busy wait
185 __asm__ __volatile__ (
186 "1: sbiw %0,1" "\n\t" // 2 cycles
187 "brne 1b" : "=w" (us) : "0" (us) // 2 cycles
188 );
189 }
190
191 void init()
192 {
193 // this needs to be called before setup() or some functions won't
194 // work there
195 sei();
196
197 // on the ATmega168, timer 0 is also used for fast hardware pwm
198 // (using phase-correct PWM would mean that timer 0 overflowed half as often
199 // resulting in different millis() behavior on the ATmega8 and ATmega168)
200 #if defined(TCCR0A) && defined(WGM01)
201 sbi(TCCR0A, WGM01);
202 sbi(TCCR0A, WGM00);
203 #endif
204
205 // set timer 0 prescale factor to 64
206 #if defined(__AVR_ATmega128__)
207 // CPU specific: different values for the ATmega128
208 sbi(TCCR0, CS02);
209 #elif defined(TCCR0) && defined(CS01) && defined(CS00)
210 // this combination is for the standard atmega8
211 sbi(TCCR0, CS01);
212 sbi(TCCR0, CS00);
213 #elif defined(TCCR0B) && defined(CS01) && defined(CS00)
214 // this combination is for the standard 168/328/1280/2560
215 sbi(TCCR0B, CS01);
216 sbi(TCCR0B, CS00);
217 #elif defined(TCCR0A) && defined(CS01) && defined(CS00)
218 // this combination is for the __AVR_ATmega645__ series
219 sbi(TCCR0A, CS01);
220 sbi(TCCR0A, CS00);
221 #else
222 #error Timer 0 prescale factor 64 not set correctly
223 #endif
224
225 // enable timer 0 overflow interrupt
226 #if defined(TIMSK) && defined(TOIE0)
227 sbi(TIMSK, TOIE0);
228 #elif defined(TIMSK0) && defined(TOIE0)
229 sbi(TIMSK0, TOIE0);
230 #else
231 #error Timer 0 overflow interrupt not set correctly
232 #endif
233
234 // timers 1 and 2 are used for phase-correct hardware pwm
235 // this is better for motors as it ensures an even waveform
236 // note, however, that fast pwm mode can achieve a frequency of up
237 // 8 MHz (with a 16 MHz clock) at 50% duty cycle
238
239 #if defined(TCCR1B) && defined(CS11) && defined(CS10)
240 TCCR1B = 0;
241
242 // set timer 1 prescale factor to 64
243 sbi(TCCR1B, CS11);
244 #if F_CPU >= 8000000L
245 sbi(TCCR1B, CS10);
246 #endif
247 #elif defined(TCCR1) && defined(CS11) && defined(CS10)
248 sbi(TCCR1, CS11);
249 #if F_CPU >= 8000000L
250 sbi(TCCR1, CS10);
251 #endif
252 #endif
253 // put timer 1 in 8-bit phase correct pwm mode
254 #if defined(TCCR1A) && defined(WGM10)
255 sbi(TCCR1A, WGM10);
256 #elif defined(TCCR1)
257 #warning this needs to be finished
258 #endif
259
260 // set timer 2 prescale factor to 64
261 #if defined(TCCR2) && defined(CS22)
262 sbi(TCCR2, CS22);
263 #elif defined(TCCR2B) && defined(CS22)
264 sbi(TCCR2B, CS22);
265 #else
266 #warning Timer 2 not finished (may not be present on this CPU)
267 #endif
268
269 // configure timer 2 for phase correct pwm (8-bit)
270 #if defined(TCCR2) && defined(WGM20)
271 sbi(TCCR2, WGM20);
272 #elif defined(TCCR2A) && defined(WGM20)
273 sbi(TCCR2A, WGM20);
274 #else
275 #warning Timer 2 not finished (may not be present on this CPU)
276 #endif
277
278 #if defined(TCCR3B) && defined(CS31) && defined(WGM30)
279 sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
280 sbi(TCCR3B, CS30);
281 sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
282 #endif
283
284 #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
285 sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
286 sbi(TCCR4B, CS41);
287 sbi(TCCR4B, CS40);
288 sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
289 sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
290 sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
291 #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
292 #if defined(TCCR4B) && defined(CS41) && defined(WGM40)
293 sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
294 sbi(TCCR4B, CS40);
295 sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
296 #endif
297 #endif /* end timer4 block for ATMEGA1280/2560 and similar */
298
299 #if defined(TCCR5B) && defined(CS51) && defined(WGM50)
300 sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
301 sbi(TCCR5B, CS50);
302 sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
303 #endif
304
305 #if defined(ADCSRA)
306 // set a2d prescale factor to 128
307 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
308 // XXX: this will not work properly for other clock speeds, and
309 // this code should use F_CPU to determine the prescale factor.
310 sbi(ADCSRA, ADPS2);
311 sbi(ADCSRA, ADPS1);
312 sbi(ADCSRA, ADPS0);
313
314 // enable a2d conversions
315 sbi(ADCSRA, ADEN);
316 #endif
317
318 // the bootloader connects pins 0 and 1 to the USART; disconnect them
319 // here so they can be used as normal digital i/o; they will be
320 // reconnected in Serial.begin()
321 #if defined(UCSRB)
322 UCSRB = 0;
323 #elif defined(UCSR0B)
324 UCSR0B = 0;
325 #endif
326 }
Imprint / Impressum