]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_biquad_cascade_df1_fast_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_biquad_cascade_df1_fast_q15.c
9 *
10 * Description: Fast processing function for the
11 * Q15 Biquad cascade filter.
12 *
13 * Target Processor: Cortex-M4/Cortex-M3
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * - Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * - Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 * - Neither the name of ARM LIMITED nor the names of its contributors
25 * may be used to endorse or promote products derived from this
26 * software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
31 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
32 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
33 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
34 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
35 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
36 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
38 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 * -------------------------------------------------------------------- */
41
42 #include "arm_math.h"
43
44 /**
45 * @ingroup groupFilters
46 */
47
48 /**
49 * @addtogroup BiquadCascadeDF1
50 * @{
51 */
52
53 /**
54 * @details
55 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
56 * @param[in] *pSrc points to the block of input data.
57 * @param[out] *pDst points to the block of output data.
58 * @param[in] blockSize number of samples to process per call.
59 * @return none.
60 *
61 * <b>Scaling and Overflow Behavior:</b>
62 * \par
63 * This fast version uses a 32-bit accumulator with 2.30 format.
64 * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
65 * Thus, if the accumulator result overflows it wraps around and distorts the result.
66 * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
67 * The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
68 *
69 * \par
70 * Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
71 * Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
72 *
73 */
74
75 void arm_biquad_cascade_df1_fast_q15(
76 const arm_biquad_casd_df1_inst_q15 * S,
77 q15_t * pSrc,
78 q15_t * pDst,
79 uint32_t blockSize)
80 {
81 q15_t *pIn = pSrc; /* Source pointer */
82 q15_t *pOut = pDst; /* Destination pointer */
83 q31_t in; /* Temporary variable to hold input value */
84 q31_t out; /* Temporary variable to hold output value */
85 q31_t b0; /* Temporary variable to hold bo value */
86 q31_t b1, a1; /* Filter coefficients */
87 q31_t state_in, state_out; /* Filter state variables */
88 q31_t acc; /* Accumulator */
89 int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */
90 q15_t *pState = S->pState; /* State pointer */
91 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
92 uint32_t sample, stage = S->numStages; /* Stage loop counter */
93
94
95
96 do
97 {
98
99 /* Read the b0 and 0 coefficients using SIMD */
100 b0 = *__SIMD32(pCoeffs)++;
101
102 /* Read the b1 and b2 coefficients using SIMD */
103 b1 = *__SIMD32(pCoeffs)++;
104
105 /* Read the a1 and a2 coefficients using SIMD */
106 a1 = *__SIMD32(pCoeffs)++;
107
108 /* Read the input state values from the state buffer: x[n-1], x[n-2] */
109 state_in = *__SIMD32(pState)++;
110
111 /* Read the output state values from the state buffer: y[n-1], y[n-2] */
112 state_out = *__SIMD32(pState)--;
113
114 /* Apply loop unrolling and compute 2 output values simultaneously. */
115 /* The variable acc hold output values that are being computed:
116 *
117 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
118 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
119 */
120 sample = blockSize >> 1u;
121
122 /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
123 ** a second loop below computes the remaining 1 sample. */
124 while(sample > 0u)
125 {
126
127 /* Read the input */
128 in = *__SIMD32(pIn)++;
129
130 /* out = b0 * x[n] + 0 * 0 */
131 out = __SMUAD(b0, in);
132 /* acc = b1 * x[n-1] + acc += b2 * x[n-2] + out */
133 acc = __SMLAD(b1, state_in, out);
134 /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
135 acc = __SMLAD(a1, state_out, acc);
136
137 /* The result is converted from 3.29 to 1.31 and then saturation is applied */
138 out = __SSAT((acc >> shift), 16);
139
140 /* Every time after the output is computed state should be updated. */
141 /* The states should be updated as: */
142 /* Xn2 = Xn1 */
143 /* Xn1 = Xn */
144 /* Yn2 = Yn1 */
145 /* Yn1 = acc */
146 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
147 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
148
149 #ifndef ARM_MATH_BIG_ENDIAN
150
151 state_in = __PKHBT(in, state_in, 16);
152 state_out = __PKHBT(out, state_out, 16);
153
154 #else
155
156 state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
157 state_out = __PKHBT(state_out >> 16, (out), 16);
158
159 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
160
161 /* out = b0 * x[n] + 0 * 0 */
162 out = __SMUADX(b0, in);
163 /* acc0 = b1 * x[n-1] , acc0 += b2 * x[n-2] + out */
164 acc = __SMLAD(b1, state_in, out);
165 /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
166 acc = __SMLAD(a1, state_out, acc);
167
168 /* The result is converted from 3.29 to 1.31 and then saturation is applied */
169 out = __SSAT((acc >> shift), 16);
170
171
172 /* Store the output in the destination buffer. */
173
174 #ifndef ARM_MATH_BIG_ENDIAN
175
176 *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
177
178 #else
179
180 *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
181
182 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
183
184 /* Every time after the output is computed state should be updated. */
185 /* The states should be updated as: */
186 /* Xn2 = Xn1 */
187 /* Xn1 = Xn */
188 /* Yn2 = Yn1 */
189 /* Yn1 = acc */
190 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
191 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
192
193 #ifndef ARM_MATH_BIG_ENDIAN
194
195 state_in = __PKHBT(in >> 16, state_in, 16);
196 state_out = __PKHBT(out, state_out, 16);
197
198 #else
199
200 state_in = __PKHBT(state_in >> 16, in, 16);
201 state_out = __PKHBT(state_out >> 16, out, 16);
202
203 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
204
205
206 /* Decrement the loop counter */
207 sample--;
208
209 }
210
211 /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
212 ** No loop unrolling is used. */
213
214 if((blockSize & 0x1u) != 0u)
215 {
216 /* Read the input */
217 in = *pIn++;
218
219 /* out = b0 * x[n] + 0 * 0 */
220
221 #ifndef ARM_MATH_BIG_ENDIAN
222
223 out = __SMUAD(b0, in);
224
225 #else
226
227 out = __SMUADX(b0, in);
228
229 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
230
231 /* acc = b1 * x[n-1], acc += b2 * x[n-2] + out */
232 acc = __SMLAD(b1, state_in, out);
233 /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
234 acc = __SMLAD(a1, state_out, acc);
235
236 /* The result is converted from 3.29 to 1.31 and then saturation is applied */
237 out = __SSAT((acc >> shift), 16);
238
239 /* Store the output in the destination buffer. */
240 *pOut++ = (q15_t) out;
241
242 /* Every time after the output is computed state should be updated. */
243 /* The states should be updated as: */
244 /* Xn2 = Xn1 */
245 /* Xn1 = Xn */
246 /* Yn2 = Yn1 */
247 /* Yn1 = acc */
248 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
249 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
250
251 #ifndef ARM_MATH_BIG_ENDIAN
252
253 state_in = __PKHBT(in, state_in, 16);
254 state_out = __PKHBT(out, state_out, 16);
255
256 #else
257
258 state_in = __PKHBT(state_in >> 16, in, 16);
259 state_out = __PKHBT(state_out >> 16, out, 16);
260
261 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
262
263 }
264
265 /* The first stage goes from the input buffer to the output buffer. */
266 /* Subsequent (numStages - 1) occur in-place in the output buffer */
267 pIn = pDst;
268
269 /* Reset the output pointer */
270 pOut = pDst;
271
272 /* Store the updated state variables back into the state array */
273 *__SIMD32(pState)++ = state_in;
274 *__SIMD32(pState)++ = state_out;
275
276
277 /* Decrement the loop counter */
278 stage--;
279
280 } while(stage > 0u);
281 }
282
283
284 /**
285 * @} end of BiquadCascadeDF1 group
286 */
Imprint / Impressum