]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_conv_opt_q15.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_conv_opt_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_conv_opt_q15.c
9 *
10 * Description: Convolution of Q15 sequences.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup Conv
49 * @{
50 */
51
52 /**
53 * @brief Convolution of Q15 sequences.
54 * @param[in] *pSrcA points to the first input sequence.
55 * @param[in] srcALen length of the first input sequence.
56 * @param[in] *pSrcB points to the second input sequence.
57 * @param[in] srcBLen length of the second input sequence.
58 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
59 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
60 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
61 * @return none.
62 *
63 * \par Restrictions
64 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
65 * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
66 *
67 *
68 * @details
69 * <b>Scaling and Overflow Behavior:</b>
70 *
71 * \par
72 * The function is implemented using a 64-bit internal accumulator.
73 * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
74 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
75 * This approach provides 33 guard bits and there is no risk of overflow.
76 * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
77 *
78 *
79 * \par
80 * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
81 *
82 *
83 */
84
85 void arm_conv_opt_q15(
86 q15_t * pSrcA,
87 uint32_t srcALen,
88 q15_t * pSrcB,
89 uint32_t srcBLen,
90 q15_t * pDst,
91 q15_t * pScratch1,
92 q15_t * pScratch2)
93 {
94 q63_t acc0, acc1, acc2, acc3; /* Accumulator */
95 q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
96 q31_t y1, y2; /* State variables */
97 q15_t *pOut = pDst; /* output pointer */
98 q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
99 q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
100 q15_t *pIn1; /* inputA pointer */
101 q15_t *pIn2; /* inputB pointer */
102 q15_t *px; /* Intermediate inputA pointer */
103 q15_t *py; /* Intermediate inputB pointer */
104 uint32_t j, k, blkCnt; /* loop counter */
105 uint32_t tapCnt; /* loop count */
106 #ifdef UNALIGNED_SUPPORT_DISABLE
107
108 q15_t a, b;
109
110 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
111
112 /* The algorithm implementation is based on the lengths of the inputs. */
113 /* srcB is always made to slide across srcA. */
114 /* So srcBLen is always considered as shorter or equal to srcALen */
115 if(srcALen >= srcBLen)
116 {
117 /* Initialization of inputA pointer */
118 pIn1 = pSrcA;
119
120 /* Initialization of inputB pointer */
121 pIn2 = pSrcB;
122
123 }
124 else
125 {
126 /* Initialization of inputA pointer */
127 pIn1 = pSrcB;
128
129 /* Initialization of inputB pointer */
130 pIn2 = pSrcA;
131
132 /* srcBLen is always considered as shorter or equal to srcALen */
133 j = srcBLen;
134 srcBLen = srcALen;
135 srcALen = j;
136 }
137
138 /* pointer to take end of scratch2 buffer */
139 pScr2 = pScratch2 + srcBLen - 1;
140
141 /* points to smaller length sequence */
142 px = pIn2;
143
144 /* Apply loop unrolling and do 4 Copies simultaneously. */
145 k = srcBLen >> 2u;
146
147 /* First part of the processing with loop unrolling copies 4 data points at a time.
148 ** a second loop below copies for the remaining 1 to 3 samples. */
149 /* Copy smaller length input sequence in reverse order into second scratch buffer */
150 while(k > 0u)
151 {
152 /* copy second buffer in reversal manner */
153 *pScr2-- = *px++;
154 *pScr2-- = *px++;
155 *pScr2-- = *px++;
156 *pScr2-- = *px++;
157
158 /* Decrement the loop counter */
159 k--;
160 }
161
162 /* If the count is not a multiple of 4, copy remaining samples here.
163 ** No loop unrolling is used. */
164 k = srcBLen % 0x4u;
165
166 while(k > 0u)
167 {
168 /* copy second buffer in reversal manner for remaining samples */
169 *pScr2-- = *px++;
170
171 /* Decrement the loop counter */
172 k--;
173 }
174
175 /* Initialze temporary scratch pointer */
176 pScr1 = pScratch1;
177
178 /* Assuming scratch1 buffer is aligned by 32-bit */
179 /* Fill (srcBLen - 1u) zeros in scratch buffer */
180 arm_fill_q15(0, pScr1, (srcBLen - 1u));
181
182 /* Update temporary scratch pointer */
183 pScr1 += (srcBLen - 1u);
184
185 /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
186
187 #ifndef UNALIGNED_SUPPORT_DISABLE
188
189 /* Copy (srcALen) samples in scratch buffer */
190 arm_copy_q15(pIn1, pScr1, srcALen);
191
192 /* Update pointers */
193 pScr1 += srcALen;
194
195 #else
196
197 /* Apply loop unrolling and do 4 Copies simultaneously. */
198 k = srcALen >> 2u;
199
200 /* First part of the processing with loop unrolling copies 4 data points at a time.
201 ** a second loop below copies for the remaining 1 to 3 samples. */
202 while(k > 0u)
203 {
204 /* copy second buffer in reversal manner */
205 *pScr1++ = *pIn1++;
206 *pScr1++ = *pIn1++;
207 *pScr1++ = *pIn1++;
208 *pScr1++ = *pIn1++;
209
210 /* Decrement the loop counter */
211 k--;
212 }
213
214 /* If the count is not a multiple of 4, copy remaining samples here.
215 ** No loop unrolling is used. */
216 k = srcALen % 0x4u;
217
218 while(k > 0u)
219 {
220 /* copy second buffer in reversal manner for remaining samples */
221 *pScr1++ = *pIn1++;
222
223 /* Decrement the loop counter */
224 k--;
225 }
226
227 #endif
228
229
230 #ifndef UNALIGNED_SUPPORT_DISABLE
231
232 /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
233 arm_fill_q15(0, pScr1, (srcBLen - 1u));
234
235 /* Update pointer */
236 pScr1 += (srcBLen - 1u);
237
238 #else
239
240 /* Apply loop unrolling and do 4 Copies simultaneously. */
241 k = (srcBLen - 1u) >> 2u;
242
243 /* First part of the processing with loop unrolling copies 4 data points at a time.
244 ** a second loop below copies for the remaining 1 to 3 samples. */
245 while(k > 0u)
246 {
247 /* copy second buffer in reversal manner */
248 *pScr1++ = 0;
249 *pScr1++ = 0;
250 *pScr1++ = 0;
251 *pScr1++ = 0;
252
253 /* Decrement the loop counter */
254 k--;
255 }
256
257 /* If the count is not a multiple of 4, copy remaining samples here.
258 ** No loop unrolling is used. */
259 k = (srcBLen - 1u) % 0x4u;
260
261 while(k > 0u)
262 {
263 /* copy second buffer in reversal manner for remaining samples */
264 *pScr1++ = 0;
265
266 /* Decrement the loop counter */
267 k--;
268 }
269
270 #endif
271
272 /* Temporary pointer for scratch2 */
273 py = pScratch2;
274
275
276 /* Initialization of pIn2 pointer */
277 pIn2 = py;
278
279 /* First part of the processing with loop unrolling process 4 data points at a time.
280 ** a second loop below process for the remaining 1 to 3 samples. */
281
282 /* Actual convolution process starts here */
283 blkCnt = (srcALen + srcBLen - 1u) >> 2;
284
285 while(blkCnt > 0)
286 {
287 /* Initialze temporary scratch pointer as scratch1 */
288 pScr1 = pScratch1;
289
290 /* Clear Accumlators */
291 acc0 = 0;
292 acc1 = 0;
293 acc2 = 0;
294 acc3 = 0;
295
296 /* Read two samples from scratch1 buffer */
297 x1 = *__SIMD32(pScr1)++;
298
299 /* Read next two samples from scratch1 buffer */
300 x2 = *__SIMD32(pScr1)++;
301
302 tapCnt = (srcBLen) >> 2u;
303
304 while(tapCnt > 0u)
305 {
306
307 #ifndef UNALIGNED_SUPPORT_DISABLE
308
309 /* Read four samples from smaller buffer */
310 y1 = _SIMD32_OFFSET(pIn2);
311 y2 = _SIMD32_OFFSET(pIn2 + 2u);
312
313 /* multiply and accumlate */
314 acc0 = __SMLALD(x1, y1, acc0);
315 acc2 = __SMLALD(x2, y1, acc2);
316
317 /* pack input data */
318 #ifndef ARM_MATH_BIG_ENDIAN
319 x3 = __PKHBT(x2, x1, 0);
320 #else
321 x3 = __PKHBT(x1, x2, 0);
322 #endif
323
324 /* multiply and accumlate */
325 acc1 = __SMLALDX(x3, y1, acc1);
326
327 /* Read next two samples from scratch1 buffer */
328 x1 = _SIMD32_OFFSET(pScr1);
329
330 /* multiply and accumlate */
331 acc0 = __SMLALD(x2, y2, acc0);
332 acc2 = __SMLALD(x1, y2, acc2);
333
334 /* pack input data */
335 #ifndef ARM_MATH_BIG_ENDIAN
336 x3 = __PKHBT(x1, x2, 0);
337 #else
338 x3 = __PKHBT(x2, x1, 0);
339 #endif
340
341 acc3 = __SMLALDX(x3, y1, acc3);
342 acc1 = __SMLALDX(x3, y2, acc1);
343
344 x2 = _SIMD32_OFFSET(pScr1 + 2u);
345
346 #ifndef ARM_MATH_BIG_ENDIAN
347 x3 = __PKHBT(x2, x1, 0);
348 #else
349 x3 = __PKHBT(x1, x2, 0);
350 #endif
351
352 acc3 = __SMLALDX(x3, y2, acc3);
353
354 #else
355
356 /* Read four samples from smaller buffer */
357 a = *pIn2;
358 b = *(pIn2 + 1);
359
360 #ifndef ARM_MATH_BIG_ENDIAN
361 y1 = __PKHBT(a, b, 16);
362 #else
363 y1 = __PKHBT(b, a, 16);
364 #endif
365
366 a = *(pIn2 + 2);
367 b = *(pIn2 + 3);
368 #ifndef ARM_MATH_BIG_ENDIAN
369 y2 = __PKHBT(a, b, 16);
370 #else
371 y2 = __PKHBT(b, a, 16);
372 #endif
373
374 acc0 = __SMLALD(x1, y1, acc0);
375
376 acc2 = __SMLALD(x2, y1, acc2);
377
378 #ifndef ARM_MATH_BIG_ENDIAN
379 x3 = __PKHBT(x2, x1, 0);
380 #else
381 x3 = __PKHBT(x1, x2, 0);
382 #endif
383
384 acc1 = __SMLALDX(x3, y1, acc1);
385
386 a = *pScr1;
387 b = *(pScr1 + 1);
388
389 #ifndef ARM_MATH_BIG_ENDIAN
390 x1 = __PKHBT(a, b, 16);
391 #else
392 x1 = __PKHBT(b, a, 16);
393 #endif
394
395 acc0 = __SMLALD(x2, y2, acc0);
396
397 acc2 = __SMLALD(x1, y2, acc2);
398
399 #ifndef ARM_MATH_BIG_ENDIAN
400 x3 = __PKHBT(x1, x2, 0);
401 #else
402 x3 = __PKHBT(x2, x1, 0);
403 #endif
404
405 acc3 = __SMLALDX(x3, y1, acc3);
406
407 acc1 = __SMLALDX(x3, y2, acc1);
408
409 a = *(pScr1 + 2);
410 b = *(pScr1 + 3);
411
412 #ifndef ARM_MATH_BIG_ENDIAN
413 x2 = __PKHBT(a, b, 16);
414 #else
415 x2 = __PKHBT(b, a, 16);
416 #endif
417
418 #ifndef ARM_MATH_BIG_ENDIAN
419 x3 = __PKHBT(x2, x1, 0);
420 #else
421 x3 = __PKHBT(x1, x2, 0);
422 #endif
423
424 acc3 = __SMLALDX(x3, y2, acc3);
425
426 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
427
428 pIn2 += 4u;
429 pScr1 += 4u;
430
431
432 /* Decrement the loop counter */
433 tapCnt--;
434 }
435
436 /* Update scratch pointer for remaining samples of smaller length sequence */
437 pScr1 -= 4u;
438
439 /* apply same above for remaining samples of smaller length sequence */
440 tapCnt = (srcBLen) & 3u;
441
442 while(tapCnt > 0u)
443 {
444
445 /* accumlate the results */
446 acc0 += (*pScr1++ * *pIn2);
447 acc1 += (*pScr1++ * *pIn2);
448 acc2 += (*pScr1++ * *pIn2);
449 acc3 += (*pScr1++ * *pIn2++);
450
451 pScr1 -= 3u;
452
453 /* Decrement the loop counter */
454 tapCnt--;
455 }
456
457 blkCnt--;
458
459
460 /* Store the results in the accumulators in the destination buffer. */
461
462 #ifndef ARM_MATH_BIG_ENDIAN
463
464 *__SIMD32(pOut)++ =
465 __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
466
467 *__SIMD32(pOut)++ =
468 __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
469
470 #else
471
472 *__SIMD32(pOut)++ =
473 __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
474
475 *__SIMD32(pOut)++ =
476 __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
477
478
479 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
480
481 /* Initialization of inputB pointer */
482 pIn2 = py;
483
484 pScratch1 += 4u;
485
486 }
487
488
489 blkCnt = (srcALen + srcBLen - 1u) & 0x3;
490
491 /* Calculate convolution for remaining samples of Bigger length sequence */
492 while(blkCnt > 0)
493 {
494 /* Initialze temporary scratch pointer as scratch1 */
495 pScr1 = pScratch1;
496
497 /* Clear Accumlators */
498 acc0 = 0;
499
500 tapCnt = (srcBLen) >> 1u;
501
502 while(tapCnt > 0u)
503 {
504
505 /* Read next two samples from scratch1 buffer */
506 acc0 += (*pScr1++ * *pIn2++);
507 acc0 += (*pScr1++ * *pIn2++);
508
509 /* Decrement the loop counter */
510 tapCnt--;
511 }
512
513 tapCnt = (srcBLen) & 1u;
514
515 /* apply same above for remaining samples of smaller length sequence */
516 while(tapCnt > 0u)
517 {
518
519 /* accumlate the results */
520 acc0 += (*pScr1++ * *pIn2++);
521
522 /* Decrement the loop counter */
523 tapCnt--;
524 }
525
526 blkCnt--;
527
528 /* The result is in 2.30 format. Convert to 1.15 with saturation.
529 ** Then store the output in the destination buffer. */
530 *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
531
532
533 /* Initialization of inputB pointer */
534 pIn2 = py;
535
536 pScratch1 += 1u;
537
538 }
539
540 }
541
542
543 /**
544 * @} end of Conv group
545 */
Imprint / Impressum