]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_fir_q15.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_fir_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_fir_q15.c
9 *
10 * Description: Q15 FIR filter processing function.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup FIR
49 * @{
50 */
51
52 /**
53 * @brief Processing function for the Q15 FIR filter.
54 * @param[in] *S points to an instance of the Q15 FIR structure.
55 * @param[in] *pSrc points to the block of input data.
56 * @param[out] *pDst points to the block of output data.
57 * @param[in] blockSize number of samples to process per call.
58 * @return none.
59 *
60 *
61 * \par Restrictions
62 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
63 * In this case input, output, state buffers should be aligned by 32-bit
64 *
65 * <b>Scaling and Overflow Behavior:</b>
66 * \par
67 * The function is implemented using a 64-bit internal accumulator.
68 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
69 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
70 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
71 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
72 * Lastly, the accumulator is saturated to yield a result in 1.15 format.
73 *
74 * \par
75 * Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
76 */
77
78 #ifndef ARM_MATH_CM0_FAMILY
79
80 /* Run the below code for Cortex-M4 and Cortex-M3 */
81
82 #ifndef UNALIGNED_SUPPORT_DISABLE
83
84
85 void arm_fir_q15(
86 const arm_fir_instance_q15 * S,
87 q15_t * pSrc,
88 q15_t * pDst,
89 uint32_t blockSize)
90 {
91 q15_t *pState = S->pState; /* State pointer */
92 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
93 q15_t *pStateCurnt; /* Points to the current sample of the state */
94 q15_t *px1; /* Temporary q15 pointer for state buffer */
95 q15_t *pb; /* Temporary pointer for coefficient buffer */
96 q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */
97 q63_t acc0, acc1, acc2, acc3; /* Accumulators */
98 uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
99 uint32_t tapCnt, blkCnt; /* Loop counters */
100
101
102 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
103 /* pStateCurnt points to the location where the new input data should be written */
104 pStateCurnt = &(S->pState[(numTaps - 1u)]);
105
106 /* Apply loop unrolling and compute 4 output values simultaneously.
107 * The variables acc0 ... acc3 hold output values that are being computed:
108 *
109 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
110 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
111 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
112 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
113 */
114
115 blkCnt = blockSize >> 2;
116
117 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
118 ** a second loop below computes the remaining 1 to 3 samples. */
119 while(blkCnt > 0u)
120 {
121 /* Copy four new input samples into the state buffer.
122 ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
123 *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
124 *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
125
126 /* Set all accumulators to zero */
127 acc0 = 0;
128 acc1 = 0;
129 acc2 = 0;
130 acc3 = 0;
131
132 /* Initialize state pointer of type q15 */
133 px1 = pState;
134
135 /* Initialize coeff pointer of type q31 */
136 pb = pCoeffs;
137
138 /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
139 x0 = _SIMD32_OFFSET(px1);
140
141 /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
142 x1 = _SIMD32_OFFSET(px1 + 1u);
143
144 px1 += 2u;
145
146 /* Loop over the number of taps. Unroll by a factor of 4.
147 ** Repeat until we've computed numTaps-4 coefficients. */
148 tapCnt = numTaps >> 2;
149
150 while(tapCnt > 0u)
151 {
152 /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
153 c0 = *__SIMD32(pb)++;
154
155 /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
156 acc0 = __SMLALD(x0, c0, acc0);
157
158 /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
159 acc1 = __SMLALD(x1, c0, acc1);
160
161 /* Read state x[n-N-2], x[n-N-3] */
162 x2 = _SIMD32_OFFSET(px1);
163
164 /* Read state x[n-N-3], x[n-N-4] */
165 x3 = _SIMD32_OFFSET(px1 + 1u);
166
167 /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
168 acc2 = __SMLALD(x2, c0, acc2);
169
170 /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
171 acc3 = __SMLALD(x3, c0, acc3);
172
173 /* Read coefficients b[N-2], b[N-3] */
174 c0 = *__SIMD32(pb)++;
175
176 /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
177 acc0 = __SMLALD(x2, c0, acc0);
178
179 /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
180 acc1 = __SMLALD(x3, c0, acc1);
181
182 /* Read state x[n-N-4], x[n-N-5] */
183 x0 = _SIMD32_OFFSET(px1 + 2u);
184
185 /* Read state x[n-N-5], x[n-N-6] */
186 x1 = _SIMD32_OFFSET(px1 + 3u);
187
188 /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
189 acc2 = __SMLALD(x0, c0, acc2);
190
191 /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
192 acc3 = __SMLALD(x1, c0, acc3);
193
194 px1 += 4u;
195
196 tapCnt--;
197
198 }
199
200
201 /* If the filter length is not a multiple of 4, compute the remaining filter taps.
202 ** This is always be 2 taps since the filter length is even. */
203 if((numTaps & 0x3u) != 0u)
204 {
205 /* Read 2 coefficients */
206 c0 = *__SIMD32(pb)++;
207
208 /* Fetch 4 state variables */
209 x2 = _SIMD32_OFFSET(px1);
210
211 x3 = _SIMD32_OFFSET(px1 + 1u);
212
213 /* Perform the multiply-accumulates */
214 acc0 = __SMLALD(x0, c0, acc0);
215
216 px1 += 2u;
217
218 acc1 = __SMLALD(x1, c0, acc1);
219 acc2 = __SMLALD(x2, c0, acc2);
220 acc3 = __SMLALD(x3, c0, acc3);
221 }
222
223 /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
224 ** Then store the 4 outputs in the destination buffer. */
225
226 #ifndef ARM_MATH_BIG_ENDIAN
227
228 *__SIMD32(pDst)++ =
229 __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
230 *__SIMD32(pDst)++ =
231 __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
232
233 #else
234
235 *__SIMD32(pDst)++ =
236 __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
237 *__SIMD32(pDst)++ =
238 __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
239
240 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
241
242
243
244 /* Advance the state pointer by 4 to process the next group of 4 samples */
245 pState = pState + 4;
246
247 /* Decrement the loop counter */
248 blkCnt--;
249 }
250
251 /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
252 ** No loop unrolling is used. */
253 blkCnt = blockSize % 0x4u;
254 while(blkCnt > 0u)
255 {
256 /* Copy two samples into state buffer */
257 *pStateCurnt++ = *pSrc++;
258
259 /* Set the accumulator to zero */
260 acc0 = 0;
261
262 /* Initialize state pointer of type q15 */
263 px1 = pState;
264
265 /* Initialize coeff pointer of type q31 */
266 pb = pCoeffs;
267
268 tapCnt = numTaps >> 1;
269
270 do
271 {
272
273 c0 = *__SIMD32(pb)++;
274 x0 = *__SIMD32(px1)++;
275
276 acc0 = __SMLALD(x0, c0, acc0);
277 tapCnt--;
278 }
279 while(tapCnt > 0u);
280
281 /* The result is in 2.30 format. Convert to 1.15 with saturation.
282 ** Then store the output in the destination buffer. */
283 *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
284
285 /* Advance state pointer by 1 for the next sample */
286 pState = pState + 1;
287
288 /* Decrement the loop counter */
289 blkCnt--;
290 }
291
292 /* Processing is complete.
293 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
294 ** This prepares the state buffer for the next function call. */
295
296 /* Points to the start of the state buffer */
297 pStateCurnt = S->pState;
298
299 /* Calculation of count for copying integer writes */
300 tapCnt = (numTaps - 1u) >> 2;
301
302 while(tapCnt > 0u)
303 {
304
305 /* Copy state values to start of state buffer */
306 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
307 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
308
309 tapCnt--;
310
311 }
312
313 /* Calculation of count for remaining q15_t data */
314 tapCnt = (numTaps - 1u) % 0x4u;
315
316 /* copy remaining data */
317 while(tapCnt > 0u)
318 {
319 *pStateCurnt++ = *pState++;
320
321 /* Decrement the loop counter */
322 tapCnt--;
323 }
324 }
325
326 #else /* UNALIGNED_SUPPORT_DISABLE */
327
328 void arm_fir_q15(
329 const arm_fir_instance_q15 * S,
330 q15_t * pSrc,
331 q15_t * pDst,
332 uint32_t blockSize)
333 {
334 q15_t *pState = S->pState; /* State pointer */
335 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
336 q15_t *pStateCurnt; /* Points to the current sample of the state */
337 q63_t acc0, acc1, acc2, acc3; /* Accumulators */
338 q15_t *pb; /* Temporary pointer for coefficient buffer */
339 q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
340 q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
341 uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
342 uint32_t tapCnt, blkCnt; /* Loop counters */
343
344
345 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
346 /* pStateCurnt points to the location where the new input data should be written */
347 pStateCurnt = &(S->pState[(numTaps - 1u)]);
348
349 /* Apply loop unrolling and compute 4 output values simultaneously.
350 * The variables acc0 ... acc3 hold output values that are being computed:
351 *
352 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
353 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
354 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
355 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
356 */
357
358 blkCnt = blockSize >> 2;
359
360 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
361 ** a second loop below computes the remaining 1 to 3 samples. */
362 while(blkCnt > 0u)
363 {
364 /* Copy four new input samples into the state buffer.
365 ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
366 *pStateCurnt++ = *pSrc++;
367 *pStateCurnt++ = *pSrc++;
368 *pStateCurnt++ = *pSrc++;
369 *pStateCurnt++ = *pSrc++;
370
371
372 /* Set all accumulators to zero */
373 acc0 = 0;
374 acc1 = 0;
375 acc2 = 0;
376 acc3 = 0;
377
378 /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
379 px = pState;
380
381 /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
382 pb = pCoeffs;
383
384 /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
385 x0 = *__SIMD32(px)++;
386
387 /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
388 x2 = *__SIMD32(px)++;
389
390 /* Loop over the number of taps. Unroll by a factor of 4.
391 ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
392 tapCnt = numTaps >> 2;
393
394 while(tapCnt > 0)
395 {
396 /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
397 c0 = *__SIMD32(pb)++;
398
399 /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
400 acc0 = __SMLALD(x0, c0, acc0);
401
402 /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
403 acc2 = __SMLALD(x2, c0, acc2);
404
405 /* pack x[n-N-1] and x[n-N-2] */
406 #ifndef ARM_MATH_BIG_ENDIAN
407 x1 = __PKHBT(x2, x0, 0);
408 #else
409 x1 = __PKHBT(x0, x2, 0);
410 #endif
411
412 /* Read state x[n-N-4], x[n-N-5] */
413 x0 = _SIMD32_OFFSET(px);
414
415 /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
416 acc1 = __SMLALDX(x1, c0, acc1);
417
418 /* pack x[n-N-3] and x[n-N-4] */
419 #ifndef ARM_MATH_BIG_ENDIAN
420 x1 = __PKHBT(x0, x2, 0);
421 #else
422 x1 = __PKHBT(x2, x0, 0);
423 #endif
424
425 /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
426 acc3 = __SMLALDX(x1, c0, acc3);
427
428 /* Read coefficients b[N-2], b[N-3] */
429 c0 = *__SIMD32(pb)++;
430
431 /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
432 acc0 = __SMLALD(x2, c0, acc0);
433
434 /* Read state x[n-N-6], x[n-N-7] with offset */
435 x2 = _SIMD32_OFFSET(px + 2u);
436
437 /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
438 acc2 = __SMLALD(x0, c0, acc2);
439
440 /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
441 acc1 = __SMLALDX(x1, c0, acc1);
442
443 /* pack x[n-N-5] and x[n-N-6] */
444 #ifndef ARM_MATH_BIG_ENDIAN
445 x1 = __PKHBT(x2, x0, 0);
446 #else
447 x1 = __PKHBT(x0, x2, 0);
448 #endif
449
450 /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
451 acc3 = __SMLALDX(x1, c0, acc3);
452
453 /* Update state pointer for next state reading */
454 px += 4u;
455
456 /* Decrement tap count */
457 tapCnt--;
458
459 }
460
461 /* If the filter length is not a multiple of 4, compute the remaining filter taps.
462 ** This is always be 2 taps since the filter length is even. */
463 if((numTaps & 0x3u) != 0u)
464 {
465
466 /* Read last two coefficients */
467 c0 = *__SIMD32(pb)++;
468
469 /* Perform the multiply-accumulates */
470 acc0 = __SMLALD(x0, c0, acc0);
471 acc2 = __SMLALD(x2, c0, acc2);
472
473 /* pack state variables */
474 #ifndef ARM_MATH_BIG_ENDIAN
475 x1 = __PKHBT(x2, x0, 0);
476 #else
477 x1 = __PKHBT(x0, x2, 0);
478 #endif
479
480 /* Read last state variables */
481 x0 = *__SIMD32(px);
482
483 /* Perform the multiply-accumulates */
484 acc1 = __SMLALDX(x1, c0, acc1);
485
486 /* pack state variables */
487 #ifndef ARM_MATH_BIG_ENDIAN
488 x1 = __PKHBT(x0, x2, 0);
489 #else
490 x1 = __PKHBT(x2, x0, 0);
491 #endif
492
493 /* Perform the multiply-accumulates */
494 acc3 = __SMLALDX(x1, c0, acc3);
495 }
496
497 /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
498 ** Then store the 4 outputs in the destination buffer. */
499
500 #ifndef ARM_MATH_BIG_ENDIAN
501
502 *__SIMD32(pDst)++ =
503 __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
504
505 *__SIMD32(pDst)++ =
506 __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
507
508 #else
509
510 *__SIMD32(pDst)++ =
511 __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
512
513 *__SIMD32(pDst)++ =
514 __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
515
516 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
517
518 /* Advance the state pointer by 4 to process the next group of 4 samples */
519 pState = pState + 4;
520
521 /* Decrement the loop counter */
522 blkCnt--;
523 }
524
525 /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
526 ** No loop unrolling is used. */
527 blkCnt = blockSize % 0x4u;
528 while(blkCnt > 0u)
529 {
530 /* Copy two samples into state buffer */
531 *pStateCurnt++ = *pSrc++;
532
533 /* Set the accumulator to zero */
534 acc0 = 0;
535
536 /* Use SIMD to hold states and coefficients */
537 px = pState;
538 pb = pCoeffs;
539
540 tapCnt = numTaps >> 1u;
541
542 do
543 {
544 acc0 += (q31_t) * px++ * *pb++;
545 acc0 += (q31_t) * px++ * *pb++;
546 tapCnt--;
547 }
548 while(tapCnt > 0u);
549
550 /* The result is in 2.30 format. Convert to 1.15 with saturation.
551 ** Then store the output in the destination buffer. */
552 *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
553
554 /* Advance state pointer by 1 for the next sample */
555 pState = pState + 1u;
556
557 /* Decrement the loop counter */
558 blkCnt--;
559 }
560
561 /* Processing is complete.
562 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
563 ** This prepares the state buffer for the next function call. */
564
565 /* Points to the start of the state buffer */
566 pStateCurnt = S->pState;
567
568 /* Calculation of count for copying integer writes */
569 tapCnt = (numTaps - 1u) >> 2;
570
571 while(tapCnt > 0u)
572 {
573 *pStateCurnt++ = *pState++;
574 *pStateCurnt++ = *pState++;
575 *pStateCurnt++ = *pState++;
576 *pStateCurnt++ = *pState++;
577
578 tapCnt--;
579
580 }
581
582 /* Calculation of count for remaining q15_t data */
583 tapCnt = (numTaps - 1u) % 0x4u;
584
585 /* copy remaining data */
586 while(tapCnt > 0u)
587 {
588 *pStateCurnt++ = *pState++;
589
590 /* Decrement the loop counter */
591 tapCnt--;
592 }
593 }
594
595
596 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
597
598 #else /* ARM_MATH_CM0_FAMILY */
599
600
601 /* Run the below code for Cortex-M0 */
602
603 void arm_fir_q15(
604 const arm_fir_instance_q15 * S,
605 q15_t * pSrc,
606 q15_t * pDst,
607 uint32_t blockSize)
608 {
609 q15_t *pState = S->pState; /* State pointer */
610 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
611 q15_t *pStateCurnt; /* Points to the current sample of the state */
612
613
614
615 q15_t *px; /* Temporary pointer for state buffer */
616 q15_t *pb; /* Temporary pointer for coefficient buffer */
617 q63_t acc; /* Accumulator */
618 uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */
619 uint32_t tapCnt, blkCnt; /* Loop counters */
620
621 /* S->pState buffer contains previous frame (numTaps - 1) samples */
622 /* pStateCurnt points to the location where the new input data should be written */
623 pStateCurnt = &(S->pState[(numTaps - 1u)]);
624
625 /* Initialize blkCnt with blockSize */
626 blkCnt = blockSize;
627
628 while(blkCnt > 0u)
629 {
630 /* Copy one sample at a time into state buffer */
631 *pStateCurnt++ = *pSrc++;
632
633 /* Set the accumulator to zero */
634 acc = 0;
635
636 /* Initialize state pointer */
637 px = pState;
638
639 /* Initialize Coefficient pointer */
640 pb = pCoeffs;
641
642 tapCnt = numTaps;
643
644 /* Perform the multiply-accumulates */
645 do
646 {
647 /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
648 acc += (q31_t) * px++ * *pb++;
649 tapCnt--;
650 } while(tapCnt > 0u);
651
652 /* The result is in 2.30 format. Convert to 1.15
653 ** Then store the output in the destination buffer. */
654 *pDst++ = (q15_t) __SSAT((acc >> 15u), 16);
655
656 /* Advance state pointer by 1 for the next sample */
657 pState = pState + 1;
658
659 /* Decrement the samples loop counter */
660 blkCnt--;
661 }
662
663 /* Processing is complete.
664 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
665 ** This prepares the state buffer for the next function call. */
666
667 /* Points to the start of the state buffer */
668 pStateCurnt = S->pState;
669
670 /* Copy numTaps number of values */
671 tapCnt = (numTaps - 1u);
672
673 /* copy data */
674 while(tapCnt > 0u)
675 {
676 *pStateCurnt++ = *pState++;
677
678 /* Decrement the loop counter */
679 tapCnt--;
680 }
681
682 }
683
684 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
685
686
687
688
689 /**
690 * @} end of FIR group
691 */
Imprint / Impressum