]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_fir_q31.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_fir_q31.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_fir_q31.c
9 *
10 * Description: Q31 FIR filter processing function.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup FIR
49 * @{
50 */
51
52 /**
53 * @param[in] *S points to an instance of the Q31 FIR filter structure.
54 * @param[in] *pSrc points to the block of input data.
55 * @param[out] *pDst points to the block of output data.
56 * @param[in] blockSize number of samples to process per call.
57 * @return none.
58 *
59 * @details
60 * <b>Scaling and Overflow Behavior:</b>
61 * \par
62 * The function is implemented using an internal 64-bit accumulator.
63 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
64 * Thus, if the accumulator result overflows it wraps around rather than clip.
65 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
66 * After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
67 *
68 * \par
69 * Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
70 */
71
72 void arm_fir_q31(
73 const arm_fir_instance_q31 * S,
74 q31_t * pSrc,
75 q31_t * pDst,
76 uint32_t blockSize)
77 {
78 q31_t *pState = S->pState; /* State pointer */
79 q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
80 q31_t *pStateCurnt; /* Points to the current sample of the state */
81
82
83 #ifndef ARM_MATH_CM0_FAMILY
84
85 /* Run the below code for Cortex-M4 and Cortex-M3 */
86
87 q31_t x0, x1, x2; /* Temporary variables to hold state */
88 q31_t c0; /* Temporary variable to hold coefficient value */
89 q31_t *px; /* Temporary pointer for state */
90 q31_t *pb; /* Temporary pointer for coefficient buffer */
91 q63_t acc0, acc1, acc2; /* Accumulators */
92 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
93 uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
94
95 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
96 /* pStateCurnt points to the location where the new input data should be written */
97 pStateCurnt = &(S->pState[(numTaps - 1u)]);
98
99 /* Apply loop unrolling and compute 4 output values simultaneously.
100 * The variables acc0 ... acc3 hold output values that are being computed:
101 *
102 * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
103 * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
104 * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
105 * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
106 */
107 blkCnt = blockSize / 3;
108 blockSize = blockSize - (3 * blkCnt);
109
110 tapCnt = numTaps / 3;
111 tapCntN3 = numTaps - (3 * tapCnt);
112
113 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
114 ** a second loop below computes the remaining 1 to 3 samples. */
115 while(blkCnt > 0u)
116 {
117 /* Copy three new input samples into the state buffer */
118 *pStateCurnt++ = *pSrc++;
119 *pStateCurnt++ = *pSrc++;
120 *pStateCurnt++ = *pSrc++;
121
122 /* Set all accumulators to zero */
123 acc0 = 0;
124 acc1 = 0;
125 acc2 = 0;
126
127 /* Initialize state pointer */
128 px = pState;
129
130 /* Initialize coefficient pointer */
131 pb = pCoeffs;
132
133 /* Read the first two samples from the state buffer:
134 * x[n-numTaps], x[n-numTaps-1] */
135 x0 = *(px++);
136 x1 = *(px++);
137
138 /* Loop unrolling. Process 3 taps at a time. */
139 i = tapCnt;
140
141 while(i > 0u)
142 {
143 /* Read the b[numTaps] coefficient */
144 c0 = *pb;
145
146 /* Read x[n-numTaps-2] sample */
147 x2 = *(px++);
148
149 /* Perform the multiply-accumulates */
150 acc0 += ((q63_t) x0 * c0);
151 acc1 += ((q63_t) x1 * c0);
152 acc2 += ((q63_t) x2 * c0);
153
154 /* Read the coefficient and state */
155 c0 = *(pb + 1u);
156 x0 = *(px++);
157
158 /* Perform the multiply-accumulates */
159 acc0 += ((q63_t) x1 * c0);
160 acc1 += ((q63_t) x2 * c0);
161 acc2 += ((q63_t) x0 * c0);
162
163 /* Read the coefficient and state */
164 c0 = *(pb + 2u);
165 x1 = *(px++);
166
167 /* update coefficient pointer */
168 pb += 3u;
169
170 /* Perform the multiply-accumulates */
171 acc0 += ((q63_t) x2 * c0);
172 acc1 += ((q63_t) x0 * c0);
173 acc2 += ((q63_t) x1 * c0);
174
175 /* Decrement the loop counter */
176 i--;
177 }
178
179 /* If the filter length is not a multiple of 3, compute the remaining filter taps */
180
181 i = tapCntN3;
182
183 while(i > 0u)
184 {
185 /* Read coefficients */
186 c0 = *(pb++);
187
188 /* Fetch 1 state variable */
189 x2 = *(px++);
190
191 /* Perform the multiply-accumulates */
192 acc0 += ((q63_t) x0 * c0);
193 acc1 += ((q63_t) x1 * c0);
194 acc2 += ((q63_t) x2 * c0);
195
196 /* Reuse the present sample states for next sample */
197 x0 = x1;
198 x1 = x2;
199
200 /* Decrement the loop counter */
201 i--;
202 }
203
204 /* Advance the state pointer by 3 to process the next group of 3 samples */
205 pState = pState + 3;
206
207 /* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
208 ** Then store the 3 outputs in the destination buffer. */
209 *pDst++ = (q31_t) (acc0 >> 31u);
210 *pDst++ = (q31_t) (acc1 >> 31u);
211 *pDst++ = (q31_t) (acc2 >> 31u);
212
213 /* Decrement the samples loop counter */
214 blkCnt--;
215 }
216
217 /* If the blockSize is not a multiple of 3, compute any remaining output samples here.
218 ** No loop unrolling is used. */
219
220 while(blockSize > 0u)
221 {
222 /* Copy one sample at a time into state buffer */
223 *pStateCurnt++ = *pSrc++;
224
225 /* Set the accumulator to zero */
226 acc0 = 0;
227
228 /* Initialize state pointer */
229 px = pState;
230
231 /* Initialize Coefficient pointer */
232 pb = (pCoeffs);
233
234 i = numTaps;
235
236 /* Perform the multiply-accumulates */
237 do
238 {
239 acc0 += (q63_t) * (px++) * (*(pb++));
240 i--;
241 } while(i > 0u);
242
243 /* The result is in 2.62 format. Convert to 1.31
244 ** Then store the output in the destination buffer. */
245 *pDst++ = (q31_t) (acc0 >> 31u);
246
247 /* Advance state pointer by 1 for the next sample */
248 pState = pState + 1;
249
250 /* Decrement the samples loop counter */
251 blockSize--;
252 }
253
254 /* Processing is complete.
255 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
256 ** This prepares the state buffer for the next function call. */
257
258 /* Points to the start of the state buffer */
259 pStateCurnt = S->pState;
260
261 tapCnt = (numTaps - 1u) >> 2u;
262
263 /* copy data */
264 while(tapCnt > 0u)
265 {
266 *pStateCurnt++ = *pState++;
267 *pStateCurnt++ = *pState++;
268 *pStateCurnt++ = *pState++;
269 *pStateCurnt++ = *pState++;
270
271 /* Decrement the loop counter */
272 tapCnt--;
273 }
274
275 /* Calculate remaining number of copies */
276 tapCnt = (numTaps - 1u) % 0x4u;
277
278 /* Copy the remaining q31_t data */
279 while(tapCnt > 0u)
280 {
281 *pStateCurnt++ = *pState++;
282
283 /* Decrement the loop counter */
284 tapCnt--;
285 }
286
287 #else
288
289 /* Run the below code for Cortex-M0 */
290
291 q31_t *px; /* Temporary pointer for state */
292 q31_t *pb; /* Temporary pointer for coefficient buffer */
293 q63_t acc; /* Accumulator */
294 uint32_t numTaps = S->numTaps; /* Length of the filter */
295 uint32_t i, tapCnt, blkCnt; /* Loop counters */
296
297 /* S->pState buffer contains previous frame (numTaps - 1) samples */
298 /* pStateCurnt points to the location where the new input data should be written */
299 pStateCurnt = &(S->pState[(numTaps - 1u)]);
300
301 /* Initialize blkCnt with blockSize */
302 blkCnt = blockSize;
303
304 while(blkCnt > 0u)
305 {
306 /* Copy one sample at a time into state buffer */
307 *pStateCurnt++ = *pSrc++;
308
309 /* Set the accumulator to zero */
310 acc = 0;
311
312 /* Initialize state pointer */
313 px = pState;
314
315 /* Initialize Coefficient pointer */
316 pb = pCoeffs;
317
318 i = numTaps;
319
320 /* Perform the multiply-accumulates */
321 do
322 {
323 /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
324 acc += (q63_t) * px++ * *pb++;
325 i--;
326 } while(i > 0u);
327
328 /* The result is in 2.62 format. Convert to 1.31
329 ** Then store the output in the destination buffer. */
330 *pDst++ = (q31_t) (acc >> 31u);
331
332 /* Advance state pointer by 1 for the next sample */
333 pState = pState + 1;
334
335 /* Decrement the samples loop counter */
336 blkCnt--;
337 }
338
339 /* Processing is complete.
340 ** Now copy the last numTaps - 1 samples to the starting of the state buffer.
341 ** This prepares the state buffer for the next function call. */
342
343 /* Points to the start of the state buffer */
344 pStateCurnt = S->pState;
345
346 /* Copy numTaps number of values */
347 tapCnt = numTaps - 1u;
348
349 /* Copy the data */
350 while(tapCnt > 0u)
351 {
352 *pStateCurnt++ = *pState++;
353
354 /* Decrement the loop counter */
355 tapCnt--;
356 }
357
358
359 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
360
361 }
362
363 /**
364 * @} end of FIR group
365 */
Imprint / Impressum