]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/MatrixFunctions/arm_mat_mult_q15.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / MatrixFunctions / arm_mat_mult_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_mat_mult_q15.c
9 *
10 * Description: Q15 matrix multiplication.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupMatrix
45 */
46
47 /**
48 * @addtogroup MatrixMult
49 * @{
50 */
51
52
53 /**
54 * @brief Q15 matrix multiplication
55 * @param[in] *pSrcA points to the first input matrix structure
56 * @param[in] *pSrcB points to the second input matrix structure
57 * @param[out] *pDst points to output matrix structure
58 * @param[in] *pState points to the array for storing intermediate results
59 * @return The function returns either
60 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
61 *
62 * @details
63 * <b>Scaling and Overflow Behavior:</b>
64 *
65 * \par
66 * The function is implemented using a 64-bit internal accumulator. The inputs to the
67 * multiplications are in 1.15 format and multiplications yield a 2.30 result.
68 * The 2.30 intermediate
69 * results are accumulated in a 64-bit accumulator in 34.30 format. This approach
70 * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
71 * truncated to 34.15 format by discarding the low 15 bits and then saturated to
72 * 1.15 format.
73 *
74 * \par
75 * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
76 *
77 */
78
79 arm_status arm_mat_mult_q15(
80 const arm_matrix_instance_q15 * pSrcA,
81 const arm_matrix_instance_q15 * pSrcB,
82 arm_matrix_instance_q15 * pDst,
83 q15_t * pState CMSIS_UNUSED)
84 {
85 q63_t sum; /* accumulator */
86
87 #ifndef ARM_MATH_CM0_FAMILY
88
89 /* Run the below code for Cortex-M4 and Cortex-M3 */
90
91 q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
92 q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
93 q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
94 q15_t *px; /* Temporary output data matrix pointer */
95 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
96 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
97 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
98 uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
99 uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
100 arm_status status; /* status of matrix multiplication */
101
102 #ifndef UNALIGNED_SUPPORT_DISABLE
103
104 q31_t in; /* Temporary variable to hold the input value */
105 q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2;
106
107 #else
108
109 q15_t in; /* Temporary variable to hold the input value */
110 q15_t inA1, inB1, inA2, inB2;
111
112 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
113
114 #ifdef ARM_MATH_MATRIX_CHECK
115 /* Check for matrix mismatch condition */
116 if((pSrcA->numCols != pSrcB->numRows) ||
117 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
118 {
119 /* Set status as ARM_MATH_SIZE_MISMATCH */
120 status = ARM_MATH_SIZE_MISMATCH;
121 }
122 else
123 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
124 {
125 /* Matrix transpose */
126 do
127 {
128 /* Apply loop unrolling and exchange the columns with row elements */
129 col = numColsB >> 2;
130
131 /* The pointer px is set to starting address of the column being processed */
132 px = pSrcBT + i;
133
134 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
135 ** a second loop below computes the remaining 1 to 3 samples. */
136 while(col > 0u)
137 {
138 #ifndef UNALIGNED_SUPPORT_DISABLE
139
140 /* Read two elements from the row */
141 in = *__SIMD32(pInB)++;
142
143 /* Unpack and store one element in the destination */
144 #ifndef ARM_MATH_BIG_ENDIAN
145
146 *px = (q15_t) in;
147
148 #else
149
150 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
151
152 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
153
154 /* Update the pointer px to point to the next row of the transposed matrix */
155 px += numRowsB;
156
157 /* Unpack and store the second element in the destination */
158 #ifndef ARM_MATH_BIG_ENDIAN
159
160 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
161
162 #else
163
164 *px = (q15_t) in;
165
166 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
167
168 /* Update the pointer px to point to the next row of the transposed matrix */
169 px += numRowsB;
170
171 /* Read two elements from the row */
172 in = *__SIMD32(pInB)++;
173
174 /* Unpack and store one element in the destination */
175 #ifndef ARM_MATH_BIG_ENDIAN
176
177 *px = (q15_t) in;
178
179 #else
180
181 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
182
183 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
184
185 /* Update the pointer px to point to the next row of the transposed matrix */
186 px += numRowsB;
187
188 /* Unpack and store the second element in the destination */
189
190 #ifndef ARM_MATH_BIG_ENDIAN
191
192 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
193
194 #else
195
196 *px = (q15_t) in;
197
198 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
199
200 /* Update the pointer px to point to the next row of the transposed matrix */
201 px += numRowsB;
202
203 #else
204
205 /* Read one element from the row */
206 in = *pInB++;
207
208 /* Store one element in the destination */
209 *px = in;
210
211 /* Update the pointer px to point to the next row of the transposed matrix */
212 px += numRowsB;
213
214 /* Read one element from the row */
215 in = *pInB++;
216
217 /* Store one element in the destination */
218 *px = in;
219
220 /* Update the pointer px to point to the next row of the transposed matrix */
221 px += numRowsB;
222
223 /* Read one element from the row */
224 in = *pInB++;
225
226 /* Store one element in the destination */
227 *px = in;
228
229 /* Update the pointer px to point to the next row of the transposed matrix */
230 px += numRowsB;
231
232 /* Read one element from the row */
233 in = *pInB++;
234
235 /* Store one element in the destination */
236 *px = in;
237
238 /* Update the pointer px to point to the next row of the transposed matrix */
239 px += numRowsB;
240
241 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
242
243 /* Decrement the column loop counter */
244 col--;
245 }
246
247 /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
248 ** No loop unrolling is used. */
249 col = numColsB % 0x4u;
250
251 while(col > 0u)
252 {
253 /* Read and store the input element in the destination */
254 *px = *pInB++;
255
256 /* Update the pointer px to point to the next row of the transposed matrix */
257 px += numRowsB;
258
259 /* Decrement the column loop counter */
260 col--;
261 }
262
263 i++;
264
265 /* Decrement the row loop counter */
266 row--;
267
268 } while(row > 0u);
269
270 /* Reset the variables for the usage in the following multiplication process */
271 row = numRowsA;
272 i = 0u;
273 px = pDst->pData;
274
275 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
276 /* row loop */
277 do
278 {
279 /* For every row wise process, the column loop counter is to be initiated */
280 col = numColsB;
281
282 /* For every row wise process, the pIn2 pointer is set
283 ** to the starting address of the transposed pSrcB data */
284 pInB = pSrcBT;
285
286 /* column loop */
287 do
288 {
289 /* Set the variable sum, that acts as accumulator, to zero */
290 sum = 0;
291
292 /* Apply loop unrolling and compute 2 MACs simultaneously. */
293 colCnt = numColsA >> 2;
294
295 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
296 pInA = pSrcA->pData + i;
297
298
299 /* matrix multiplication */
300 while(colCnt > 0u)
301 {
302 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
303 #ifndef UNALIGNED_SUPPORT_DISABLE
304
305 /* read real and imag values from pSrcA and pSrcB buffer */
306 pSourceA1 = *__SIMD32(pInA)++;
307 pSourceB1 = *__SIMD32(pInB)++;
308
309 pSourceA2 = *__SIMD32(pInA)++;
310 pSourceB2 = *__SIMD32(pInB)++;
311
312 /* Multiply and Accumlates */
313 sum = __SMLALD(pSourceA1, pSourceB1, sum);
314 sum = __SMLALD(pSourceA2, pSourceB2, sum);
315
316 #else
317 /* read real and imag values from pSrcA and pSrcB buffer */
318 inA1 = *pInA++;
319 inB1 = *pInB++;
320 inA2 = *pInA++;
321 /* Multiply and Accumlates */
322 sum += inA1 * inB1;
323 inB2 = *pInB++;
324
325 inA1 = *pInA++;
326 inB1 = *pInB++;
327 /* Multiply and Accumlates */
328 sum += inA2 * inB2;
329 inA2 = *pInA++;
330 inB2 = *pInB++;
331
332 /* Multiply and Accumlates */
333 sum += inA1 * inB1;
334 sum += inA2 * inB2;
335
336 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
337
338 /* Decrement the loop counter */
339 colCnt--;
340 }
341
342 /* process remaining column samples */
343 colCnt = numColsA & 3u;
344
345 while(colCnt > 0u)
346 {
347 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
348 sum += *pInA++ * *pInB++;
349
350 /* Decrement the loop counter */
351 colCnt--;
352 }
353
354 /* Saturate and store the result in the destination buffer */
355 *px = (q15_t) (__SSAT((sum >> 15), 16));
356 px++;
357
358 /* Decrement the column loop counter */
359 col--;
360
361 } while(col > 0u);
362
363 i = i + numColsA;
364
365 /* Decrement the row loop counter */
366 row--;
367
368 } while(row > 0u);
369
370 #else
371
372 /* Run the below code for Cortex-M0 */
373
374 q15_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
375 q15_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
376 q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
377 q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
378 q15_t *pOut = pDst->pData; /* output data matrix pointer */
379 q15_t *px; /* Temporary output data matrix pointer */
380 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
381 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
382 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
383 uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
384 arm_status status; /* status of matrix multiplication */
385
386 #ifdef ARM_MATH_MATRIX_CHECK
387
388 /* Check for matrix mismatch condition */
389 if((pSrcA->numCols != pSrcB->numRows) ||
390 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
391 {
392 /* Set status as ARM_MATH_SIZE_MISMATCH */
393 status = ARM_MATH_SIZE_MISMATCH;
394 }
395 else
396 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
397
398 {
399 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
400 /* row loop */
401 do
402 {
403 /* Output pointer is set to starting address of the row being processed */
404 px = pOut + i;
405
406 /* For every row wise process, the column loop counter is to be initiated */
407 col = numColsB;
408
409 /* For every row wise process, the pIn2 pointer is set
410 ** to the starting address of the pSrcB data */
411 pIn2 = pSrcB->pData;
412
413 /* column loop */
414 do
415 {
416 /* Set the variable sum, that acts as accumulator, to zero */
417 sum = 0;
418
419 /* Initiate the pointer pIn1 to point to the starting address of pSrcA */
420 pIn1 = pInA;
421
422 /* Matrix A columns number of MAC operations are to be performed */
423 colCnt = numColsA;
424
425 /* matrix multiplication */
426 while(colCnt > 0u)
427 {
428 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
429 /* Perform the multiply-accumulates */
430 sum += (q31_t) * pIn1++ * *pIn2;
431 pIn2 += numColsB;
432
433 /* Decrement the loop counter */
434 colCnt--;
435 }
436
437 /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
438 /* Saturate and store the result in the destination buffer */
439 *px++ = (q15_t) __SSAT((sum >> 15), 16);
440
441 /* Decrement the column loop counter */
442 col--;
443
444 /* Update the pointer pIn2 to point to the starting address of the next column */
445 pIn2 = pInB + (numColsB - col);
446
447 } while(col > 0u);
448
449 /* Update the pointer pSrcA to point to the starting address of the next row */
450 i = i + numColsB;
451 pInA = pInA + numColsA;
452
453 /* Decrement the row loop counter */
454 row--;
455
456 } while(row > 0u);
457
458 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
459 /* set status as ARM_MATH_SUCCESS */
460 status = ARM_MATH_SUCCESS;
461 }
462
463 /* Return to application */
464 return (status);
465 }
466
467 /**
468 * @} end of MatrixMult group
469 */
Imprint / Impressum