]> git.gir.st - tmk_keyboard.git/blob - protocol/lufa/LUFA-git/Projects/Webserver/Lib/uip/uip.h
Squashed 'tmk_core/' changes from caca2c0..dc0e46e
[tmk_keyboard.git] / protocol / lufa / LUFA-git / Projects / Webserver / Lib / uip / uip.h
1
2 /**
3 * \addtogroup uip
4 * @{
5 */
6
7 /**
8 * \file
9 * Header file for the uIP TCP/IP stack.
10 * \author Adam Dunkels <adam@dunkels.com>
11 * \author Julien Abeille <jabeille@cisco.com> (IPv6 related code)
12 * \author Mathilde Durvy <mdurvy@cisco.com> (IPv6 related code)
13 *
14 * The uIP TCP/IP stack header file contains definitions for a number
15 * of C macros that are used by uIP programs as well as internal uIP
16 * structures, TCP/IP header structures and function declarations.
17 *
18 */
19
20 /*
21 * Copyright (c) 2001-2003, Adam Dunkels.
22 * All rights reserved.
23 *
24 * Redistribution and use in source and binary forms, with or without
25 * modification, are permitted provided that the following conditions
26 * are met:
27 * 1. Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * 2. Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in the
31 * documentation and/or other materials provided with the distribution.
32 * 3. The name of the author may not be used to endorse or promote
33 * products derived from this software without specific prior
34 * written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
37 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
38 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
40 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
42 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
43 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
44 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
45 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
46 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 * This file is part of the uIP TCP/IP stack.
49 *
50 * $Id: uip.h,v 1.24 2009/04/06 13:18:50 nvt-se Exp $
51 *
52 */
53
54 #ifndef __UIP_H__
55 #define __UIP_H__
56
57 #include "uipopt.h"
58
59 /**
60 * Representation of an IP address.
61 *
62 */
63 #if UIP_CONF_IPV6
64 typedef union uip_ip6addr_t {
65 u8_t u8[16]; /* Initialiser, must come first!!! */
66 u16_t u16[8];
67 } uip_ip6addr_t;
68
69 typedef uip_ip6addr_t uip_ipaddr_t;
70 #else /* UIP_CONF_IPV6 */
71 typedef union uip_ip4addr_t {
72 u8_t u8[4]; /* Initialiser, must come first!!! */
73 u16_t u16[2];
74 #if 0
75 u32_t u32;
76 #endif
77 } uip_ip4addr_t;
78 typedef uip_ip4addr_t uip_ipaddr_t;
79 #endif /* UIP_CONF_IPV6 */
80
81
82 /*---------------------------------------------------------------------------*/
83
84 /** \brief 16 bit 802.15.4 address */
85 struct uip_802154_shortaddr {
86 u8_t addr[2];
87 };
88 /** \brief 64 bit 802.15.4 address */
89 struct uip_802154_longaddr {
90 u8_t addr[8];
91 };
92
93 /** \brief 802.11 address */
94 struct uip_80211_addr {
95 u8_t addr[6];
96 };
97
98 /** \brief 802.3 address */
99 struct uip_eth_addr {
100 u8_t addr[6];
101 };
102
103 #if UIP_CONF_LL_802154
104 /** \brief 802.15.4 address */
105 typedef struct uip_802154_longaddr uip_lladdr_t;
106 #define UIP_802154_SHORTADDR_LEN 2
107 #define UIP_802154_LONGADDR_LEN 8
108 #define UIP_LLADDR_LEN UIP_802154_LONGADDR_LEN
109 #else /*UIP_CONF_LL_802154*/
110 #if UIP_CONF_LL_80211
111 /** \brief 802.11 address */
112 typedef struct uip_80211_addr uip_lladdr_t;
113 #define UIP_LLADDR_LEN 6
114 #else /*UIP_CONF_LL_80211*/
115 /** \brief Ethernet address */
116 typedef struct uip_eth_addr uip_lladdr_t;
117 #define UIP_LLADDR_LEN 6
118 #endif /*UIP_CONF_LL_80211*/
119 #endif /*UIP_CONF_LL_802154*/
120
121 /*---------------------------------------------------------------------------*/
122 /* First, the functions that should be called from the
123 * system. Initialization, the periodic timer, and incoming packets are
124 * handled by the following three functions.
125 */
126 /**
127 * \defgroup uipconffunc uIP configuration functions
128 * @{
129 *
130 * The uIP configuration functions are used for setting run-time
131 * parameters in uIP such as IP addresses.
132 */
133
134 /**
135 * Set the IP address of this host.
136 *
137 * The IP address is represented as a 4-byte array where the first
138 * octet of the IP address is put in the first member of the 4-byte
139 * array.
140 *
141 * Example:
142 \code
143
144 uip_ipaddr_t addr;
145
146 uip_ipaddr(&addr, 192,168,1,2);
147 uip_sethostaddr(&addr);
148
149 \endcode
150 * \param addr A pointer to an IP address of type uip_ipaddr_t;
151 *
152 * \sa uip_ipaddr()
153 *
154 * \hideinitializer
155 */
156 #define uip_sethostaddr(addr) uip_ipaddr_copy(&uip_hostaddr, (addr))
157
158 /**
159 * Get the IP address of this host.
160 *
161 * The IP address is represented as a 4-byte array where the first
162 * octet of the IP address is put in the first member of the 4-byte
163 * array.
164 *
165 * Example:
166 \code
167 uip_ipaddr_t hostaddr;
168
169 uip_gethostaddr(&hostaddr);
170 \endcode
171 * \param addr A pointer to a uip_ipaddr_t variable that will be
172 * filled in with the currently configured IP address.
173 *
174 * \hideinitializer
175 */
176 #define uip_gethostaddr(addr) uip_ipaddr_copy((addr), &uip_hostaddr)
177
178 /**
179 * Set the default router's IP address.
180 *
181 * \param addr A pointer to a uip_ipaddr_t variable containing the IP
182 * address of the default router.
183 *
184 * \sa uip_ipaddr()
185 *
186 * \hideinitializer
187 */
188 #define uip_setdraddr(addr) uip_ipaddr_copy(&uip_draddr, (addr))
189
190 /**
191 * Set the netmask.
192 *
193 * \param addr A pointer to a uip_ipaddr_t variable containing the IP
194 * address of the netmask.
195 *
196 * \sa uip_ipaddr()
197 *
198 * \hideinitializer
199 */
200 #define uip_setnetmask(addr) uip_ipaddr_copy(&uip_netmask, (addr))
201
202
203 /**
204 * Get the default router's IP address.
205 *
206 * \param addr A pointer to a uip_ipaddr_t variable that will be
207 * filled in with the IP address of the default router.
208 *
209 * \hideinitializer
210 */
211 #define uip_getdraddr(addr) uip_ipaddr_copy((addr), &uip_draddr)
212
213 /**
214 * Get the netmask.
215 *
216 * \param addr A pointer to a uip_ipaddr_t variable that will be
217 * filled in with the value of the netmask.
218 *
219 * \hideinitializer
220 */
221 #define uip_getnetmask(addr) uip_ipaddr_copy((addr), &uip_netmask)
222
223 /** @} */
224
225 /**
226 * \defgroup uipinit uIP initialization functions
227 * @{
228 *
229 * The uIP initialization functions are used for booting uIP.
230 */
231
232 /**
233 * uIP initialization function.
234 *
235 * This function should be called at boot up to initialize the uIP
236 * TCP/IP stack.
237 */
238 void uip_init(void);
239
240 /**
241 * uIP initialization function.
242 *
243 * This function may be used at boot time to set the initial ip_id.
244 */
245 void uip_setipid(u16_t id);
246
247 /** @} */
248
249 /**
250 * \defgroup uipdevfunc uIP device driver functions
251 * @{
252 *
253 * These functions are used by a network device driver for interacting
254 * with uIP.
255 */
256
257 /**
258 * Process an incoming packet.
259 *
260 * This function should be called when the device driver has received
261 * a packet from the network. The packet from the device driver must
262 * be present in the uip_buf buffer, and the length of the packet
263 * should be placed in the uip_len variable.
264 *
265 * When the function returns, there may be an outbound packet placed
266 * in the uip_buf packet buffer. If so, the uip_len variable is set to
267 * the length of the packet. If no packet is to be sent out, the
268 * uip_len variable is set to 0.
269 *
270 * The usual way of calling the function is presented by the source
271 * code below.
272 \code
273 uip_len = devicedriver_poll();
274 if(uip_len > 0) {
275 uip_input();
276 if(uip_len > 0) {
277 devicedriver_send();
278 }
279 }
280 \endcode
281 *
282 * \note If you are writing a uIP device driver that needs ARP
283 * (Address Resolution Protocol), e.g., when running uIP over
284 * Ethernet, you will need to call the uIP ARP code before calling
285 * this function:
286 \code
287 #define BUF ((struct uip_eth_hdr *)&uip_buf[0])
288 uip_len = ethernet_devicedrver_poll();
289 if(uip_len > 0) {
290 if(BUF->type == HTONS(UIP_ETHTYPE_IP)) {
291 uip_arp_ipin();
292 uip_input();
293 if(uip_len > 0) {
294 uip_arp_out();
295 ethernet_devicedriver_send();
296 }
297 } else if(BUF->type == HTONS(UIP_ETHTYPE_ARP)) {
298 uip_arp_arpin();
299 if(uip_len > 0) {
300 ethernet_devicedriver_send();
301 }
302 }
303 \endcode
304 *
305 * \hideinitializer
306 */
307 #define uip_input() uip_process(UIP_DATA)
308
309
310 /**
311 * Periodic processing for a connection identified by its number.
312 *
313 * This function does the necessary periodic processing (timers,
314 * polling) for a uIP TCP connection, and should be called when the
315 * periodic uIP timer goes off. It should be called for every
316 * connection, regardless of whether they are open of closed.
317 *
318 * When the function returns, it may have an outbound packet waiting
319 * for service in the uIP packet buffer, and if so the uip_len
320 * variable is set to a value larger than zero. The device driver
321 * should be called to send out the packet.
322 *
323 * The usual way of calling the function is through a for() loop like
324 * this:
325 \code
326 for(i = 0; i < UIP_CONNS; ++i) {
327 uip_periodic(i);
328 if(uip_len > 0) {
329 devicedriver_send();
330 }
331 }
332 \endcode
333 *
334 * \note If you are writing a uIP device driver that needs ARP
335 * (Address Resolution Protocol), e.g., when running uIP over
336 * Ethernet, you will need to call the uip_arp_out() function before
337 * calling the device driver:
338 \code
339 for(i = 0; i < UIP_CONNS; ++i) {
340 uip_periodic(i);
341 if(uip_len > 0) {
342 uip_arp_out();
343 ethernet_devicedriver_send();
344 }
345 }
346 \endcode
347 *
348 * \param conn The number of the connection which is to be periodically polled.
349 *
350 * \hideinitializer
351 */
352 #if UIP_TCP
353 #define uip_periodic(conn) do { uip_conn = &uip_conns[conn]; \
354 uip_process(UIP_TIMER); } while (0)
355
356 /**
357 *
358 *
359 */
360 #define uip_conn_active(conn) (uip_conns[conn].tcpstateflags != UIP_CLOSED)
361
362 /**
363 * Perform periodic processing for a connection identified by a pointer
364 * to its structure.
365 *
366 * Same as uip_periodic() but takes a pointer to the actual uip_conn
367 * struct instead of an integer as its argument. This function can be
368 * used to force periodic processing of a specific connection.
369 *
370 * \param conn A pointer to the uip_conn struct for the connection to
371 * be processed.
372 *
373 * \hideinitializer
374 */
375 #define uip_periodic_conn(conn) do { uip_conn = conn; \
376 uip_process(UIP_TIMER); } while (0)
377
378 /**
379 * Request that a particular connection should be polled.
380 *
381 * Similar to uip_periodic_conn() but does not perform any timer
382 * processing. The application is polled for new data.
383 *
384 * \param conn A pointer to the uip_conn struct for the connection to
385 * be processed.
386 *
387 * \hideinitializer
388 */
389 #define uip_poll_conn(conn) do { uip_conn = conn; \
390 uip_process(UIP_POLL_REQUEST); } while (0)
391
392 #endif /* UIP_TCP */
393
394 #if UIP_UDP
395 /**
396 * Periodic processing for a UDP connection identified by its number.
397 *
398 * This function is essentially the same as uip_periodic(), but for
399 * UDP connections. It is called in a similar fashion as the
400 * uip_periodic() function:
401 \code
402 for(i = 0; i < UIP_UDP_CONNS; i++) {
403 uip_udp_periodic(i);
404 if(uip_len > 0) {
405 devicedriver_send();
406 }
407 }
408 \endcode
409 *
410 * \note As for the uip_periodic() function, special care has to be
411 * taken when using uIP together with ARP and Ethernet:
412 \code
413 for(i = 0; i < UIP_UDP_CONNS; i++) {
414 uip_udp_periodic(i);
415 if(uip_len > 0) {
416 uip_arp_out();
417 ethernet_devicedriver_send();
418 }
419 }
420 \endcode
421 *
422 * \param conn The number of the UDP connection to be processed.
423 *
424 * \hideinitializer
425 */
426 #define uip_udp_periodic(conn) do { uip_udp_conn = &uip_udp_conns[conn]; \
427 uip_process(UIP_UDP_TIMER); } while(0)
428
429 /**
430 * Periodic processing for a UDP connection identified by a pointer to
431 * its structure.
432 *
433 * Same as uip_udp_periodic() but takes a pointer to the actual
434 * uip_conn struct instead of an integer as its argument. This
435 * function can be used to force periodic processing of a specific
436 * connection.
437 *
438 * \param conn A pointer to the uip_udp_conn struct for the connection
439 * to be processed.
440 *
441 * \hideinitializer
442 */
443 #define uip_udp_periodic_conn(conn) do { uip_udp_conn = conn; \
444 uip_process(UIP_UDP_TIMER); } while(0)
445 #endif /* UIP_UDP */
446
447 /** \brief Abandon the reassembly of the current packet */
448 void uip_reass_over(void);
449
450 /**
451 * The uIP packet buffer.
452 *
453 * The uip_buf array is used to hold incoming and outgoing
454 * packets. The device driver should place incoming data into this
455 * buffer. When sending data, the device driver should read the link
456 * level headers and the TCP/IP headers from this buffer. The size of
457 * the link level headers is configured by the UIP_LLH_LEN define.
458 *
459 * \note The application data need not be placed in this buffer, so
460 * the device driver must read it from the place pointed to by the
461 * uip_appdata pointer as illustrated by the following example:
462 \code
463 void
464 devicedriver_send(void)
465 {
466 hwsend(&uip_buf[0], UIP_LLH_LEN);
467 if(uip_len <= UIP_LLH_LEN + UIP_TCPIP_HLEN) {
468 hwsend(&uip_buf[UIP_LLH_LEN], uip_len - UIP_LLH_LEN);
469 } else {
470 hwsend(&uip_buf[UIP_LLH_LEN], UIP_TCPIP_HLEN);
471 hwsend(uip_appdata, uip_len - UIP_TCPIP_HLEN - UIP_LLH_LEN);
472 }
473 }
474 \endcode
475 */
476 extern u8_t uip_buf[UIP_BUFSIZE+2];
477
478
479
480 /** @} */
481
482 /*---------------------------------------------------------------------------*/
483 /* Functions that are used by the uIP application program. Opening and
484 * closing connections, sending and receiving data, etc. is all
485 * handled by the functions below.
486 */
487 /**
488 * \defgroup uipappfunc uIP application functions
489 * @{
490 *
491 * Functions used by an application running of top of uIP.
492 */
493
494 /**
495 * Start listening to the specified port.
496 *
497 * \note Since this function expects the port number in network byte
498 * order, a conversion using HTONS() or htons() is necessary.
499 *
500 \code
501 uip_listen(HTONS(80));
502 \endcode
503 *
504 * \param port A 16-bit port number in network byte order.
505 */
506 void uip_listen(u16_t port);
507
508 /**
509 * Stop listening to the specified port.
510 *
511 * \note Since this function expects the port number in network byte
512 * order, a conversion using HTONS() or htons() is necessary.
513 *
514 \code
515 uip_unlisten(HTONS(80));
516 \endcode
517 *
518 * \param port A 16-bit port number in network byte order.
519 */
520 void uip_unlisten(u16_t port);
521
522 /**
523 * Connect to a remote host using TCP.
524 *
525 * This function is used to start a new connection to the specified
526 * port on the specified host. It allocates a new connection identifier,
527 * sets the connection to the SYN_SENT state and sets the
528 * retransmission timer to 0. This will cause a TCP SYN segment to be
529 * sent out the next time this connection is periodically processed,
530 * which usually is done within 0.5 seconds after the call to
531 * uip_connect().
532 *
533 * \note This function is available only if support for active open
534 * has been configured by defining UIP_ACTIVE_OPEN to 1 in uipopt.h.
535 *
536 * \note Since this function requires the port number to be in network
537 * byte order, a conversion using HTONS() or htons() is necessary.
538 *
539 \code
540 uip_ipaddr_t ipaddr;
541
542 uip_ipaddr(&ipaddr, 192,168,1,2);
543 uip_connect(&ipaddr, HTONS(80));
544 \endcode
545 *
546 * \param ripaddr The IP address of the remote host.
547 *
548 * \param port A 16-bit port number in network byte order.
549 *
550 * \return A pointer to the uIP connection identifier for the new connection,
551 * or NULL if no connection could be allocated.
552 *
553 */
554 struct uip_conn *uip_connect(uip_ipaddr_t *ripaddr, u16_t port);
555
556
557
558 /**
559 * \internal
560 *
561 * Check if a connection has outstanding (i.e., unacknowledged) data.
562 *
563 * \param conn A pointer to the uip_conn structure for the connection.
564 *
565 * \hideinitializer
566 */
567 #define uip_outstanding(conn) ((conn)->len)
568
569 /**
570 * Send data on the current connection.
571 *
572 * This function is used to send out a single segment of TCP
573 * data. Only applications that have been invoked by uIP for event
574 * processing can send data.
575 *
576 * The amount of data that actually is sent out after a call to this
577 * function is determined by the maximum amount of data TCP allows. uIP
578 * will automatically crop the data so that only the appropriate
579 * amount of data is sent. The function uip_mss() can be used to query
580 * uIP for the amount of data that actually will be sent.
581 *
582 * \note This function does not guarantee that the sent data will
583 * arrive at the destination. If the data is lost in the network, the
584 * application will be invoked with the uip_rexmit() event being
585 * set. The application will then have to resend the data using this
586 * function.
587 *
588 * \param data A pointer to the data which is to be sent.
589 *
590 * \param len The maximum amount of data bytes to be sent.
591 *
592 * \hideinitializer
593 */
594 void uip_send(const void *data, int len);
595
596 /**
597 * The length of any incoming data that is currently available (if available)
598 * in the uip_appdata buffer.
599 *
600 * The test function uip_data() must first be used to check if there
601 * is any data available at all.
602 *
603 * \hideinitializer
604 */
605 /*void uip_datalen(void);*/
606 #define uip_datalen() uip_len
607
608 /**
609 * The length of any out-of-band data (urgent data) that has arrived
610 * on the connection.
611 *
612 * \note The configuration parameter UIP_URGDATA must be set for this
613 * function to be enabled.
614 *
615 * \hideinitializer
616 */
617 #define uip_urgdatalen() uip_urglen
618
619 /**
620 * Close the current connection.
621 *
622 * This function will close the current connection in a nice way.
623 *
624 * \hideinitializer
625 */
626 #define uip_close() (uip_flags = UIP_CLOSE)
627
628 /**
629 * Abort the current connection.
630 *
631 * This function will abort (reset) the current connection, and is
632 * usually used when an error has occurred that prevents using the
633 * uip_close() function.
634 *
635 * \hideinitializer
636 */
637 #define uip_abort() (uip_flags = UIP_ABORT)
638
639 /**
640 * Tell the sending host to stop sending data.
641 *
642 * This function will close our receiver's window so that we stop
643 * receiving data for the current connection.
644 *
645 * \hideinitializer
646 */
647 #define uip_stop() (uip_conn->tcpstateflags |= UIP_STOPPED)
648
649 /**
650 * Find out if the current connection has been previously stopped with
651 * uip_stop().
652 *
653 * \hideinitializer
654 */
655 #define uip_stopped(conn) ((conn)->tcpstateflags & UIP_STOPPED)
656
657 /**
658 * Restart the current connection, if is has previously been stopped
659 * with uip_stop().
660 *
661 * This function will open the receiver's window again so that we
662 * start receiving data for the current connection.
663 *
664 * \hideinitializer
665 */
666 #define uip_restart() do { uip_flags |= UIP_NEWDATA; \
667 uip_conn->tcpstateflags &= ~UIP_STOPPED; \
668 } while(0)
669
670
671 /* uIP tests that can be made to determine in what state the current
672 connection is, and what the application function should do. */
673
674 /**
675 * Is the current connection a UDP connection?
676 *
677 * This function checks whether the current connection is a UDP connection.
678 *
679 * \hideinitializer
680 *
681 */
682 #define uip_udpconnection() (uip_conn == NULL)
683
684 /**
685 * Is new incoming data available?
686 *
687 * Will reduce to non-zero if there is new data for the application
688 * present at the uip_appdata pointer. The size of the data is
689 * available through the uip_len variable.
690 *
691 * \hideinitializer
692 */
693 #define uip_newdata() (uip_flags & UIP_NEWDATA)
694
695 /**
696 * Has previously sent data been acknowledged?
697 *
698 * Will reduce to non-zero if the previously sent data has been
699 * acknowledged by the remote host. This means that the application
700 * can send new data.
701 *
702 * \hideinitializer
703 */
704 #define uip_acked() (uip_flags & UIP_ACKDATA)
705
706 /**
707 * Has the connection just been connected?
708 *
709 * Reduces to non-zero if the current connection has been connected to
710 * a remote host. This will happen both if the connection has been
711 * actively opened (with uip_connect()) or passively opened (with
712 * uip_listen()).
713 *
714 * \hideinitializer
715 */
716 #define uip_connected() (uip_flags & UIP_CONNECTED)
717
718 /**
719 * Has the connection been closed by the other end?
720 *
721 * Is non-zero if the connection has been closed by the remote
722 * host. The application may then do the necessary clean-ups.
723 *
724 * \hideinitializer
725 */
726 #define uip_closed() (uip_flags & UIP_CLOSE)
727
728 /**
729 * Has the connection been aborted by the other end?
730 *
731 * Non-zero if the current connection has been aborted (reset) by the
732 * remote host.
733 *
734 * \hideinitializer
735 */
736 #define uip_aborted() (uip_flags & UIP_ABORT)
737
738 /**
739 * Has the connection timed out?
740 *
741 * Non-zero if the current connection has been aborted due to too many
742 * retransmissions.
743 *
744 * \hideinitializer
745 */
746 #define uip_timedout() (uip_flags & UIP_TIMEDOUT)
747
748 /**
749 * Do we need to retransmit previously data?
750 *
751 * Reduces to non-zero if the previously sent data has been lost in
752 * the network, and the application should retransmit it. The
753 * application should send the exact same data as it did the last
754 * time, using the uip_send() function.
755 *
756 * \hideinitializer
757 */
758 #define uip_rexmit() (uip_flags & UIP_REXMIT)
759
760 /**
761 * Is the connection being polled by uIP?
762 *
763 * Is non-zero if the reason the application is invoked is that the
764 * current connection has been idle for a while and should be
765 * polled.
766 *
767 * The polling event can be used for sending data without having to
768 * wait for the remote host to send data.
769 *
770 * \hideinitializer
771 */
772 #define uip_poll() (uip_flags & UIP_POLL)
773
774 /**
775 * Get the initial maximum segment size (MSS) of the current
776 * connection.
777 *
778 * \hideinitializer
779 */
780 #define uip_initialmss() (uip_conn->initialmss)
781
782 /**
783 * Get the current maximum segment size that can be sent on the current
784 * connection.
785 *
786 * The current maximum segment size that can be sent on the
787 * connection is computed from the receiver's window and the MSS of
788 * the connection (which also is available by calling
789 * uip_initialmss()).
790 *
791 * \hideinitializer
792 */
793 #define uip_mss() (uip_conn->mss)
794
795 /**
796 * Set up a new UDP connection.
797 *
798 * This function sets up a new UDP connection. The function will
799 * automatically allocate an unused local port for the new
800 * connection. However, another port can be chosen by using the
801 * uip_udp_bind() call, after the uip_udp_new() function has been
802 * called.
803 *
804 * Example:
805 \code
806 uip_ipaddr_t addr;
807 struct uip_udp_conn *c;
808
809 uip_ipaddr(&addr, 192,168,2,1);
810 c = uip_udp_new(&addr, HTONS(12345));
811 if(c != NULL) {
812 uip_udp_bind(c, HTONS(12344));
813 }
814 \endcode
815 * \param ripaddr The IP address of the remote host.
816 *
817 * \param rport The remote port number in network byte order.
818 *
819 * \return The uip_udp_conn structure for the new connection or NULL
820 * if no connection could be allocated.
821 */
822 struct uip_udp_conn *uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport);
823
824 /**
825 * Removed a UDP connection.
826 *
827 * \param conn A pointer to the uip_udp_conn structure for the connection.
828 *
829 * \hideinitializer
830 */
831 #define uip_udp_remove(conn) (conn)->lport = 0
832
833 /**
834 * Bind a UDP connection to a local port.
835 *
836 * \param conn A pointer to the uip_udp_conn structure for the
837 * connection.
838 *
839 * \param port The local port number, in network byte order.
840 *
841 * \hideinitializer
842 */
843 #define uip_udp_bind(conn, port) (conn)->lport = port
844
845 /**
846 * Send a UDP datagram of length len on the current connection.
847 *
848 * This function can only be called in response to a UDP event (poll
849 * or newdata). The data must be present in the uip_buf buffer, at the
850 * place pointed to by the uip_appdata pointer.
851 *
852 * \param len The length of the data in the uip_buf buffer.
853 *
854 * \hideinitializer
855 */
856 #define uip_udp_send(len) uip_send((char *)uip_appdata, len)
857
858 /** @} */
859
860 /* uIP convenience and converting functions. */
861
862 /**
863 * \defgroup uipconvfunc uIP conversion functions
864 * @{
865 *
866 * These functions can be used for converting between different data
867 * formats used by uIP.
868 */
869
870 /**
871 * Convert an IP address to four bytes separated by commas.
872 *
873 * Example:
874 \code
875 uip_ipaddr_t ipaddr;
876 printf("ipaddr=%d.%d.%d.%d\n", uip_ipaddr_to_quad(&ipaddr));
877 \endcode
878 *
879 * \param a A pointer to a uip_ipaddr_t.
880 * \hideinitializer
881 */
882 #define uip_ipaddr_to_quad(a) (a)->u8[0],(a)->u8[1],(a)->u8[2],(a)->u8[3]
883
884 /**
885 * Construct an IP address from four bytes.
886 *
887 * This function constructs an IP address of the type that uIP handles
888 * internally from four bytes. The function is handy for specifying IP
889 * addresses to use with e.g. the uip_connect() function.
890 *
891 * Example:
892 \code
893 uip_ipaddr_t ipaddr;
894 struct uip_conn *c;
895
896 uip_ipaddr(&ipaddr, 192,168,1,2);
897 c = uip_connect(&ipaddr, HTONS(80));
898 \endcode
899 *
900 * \param addr A pointer to a uip_ipaddr_t variable that will be
901 * filled in with the IP address.
902 *
903 * \param addr0 The first octet of the IP address.
904 * \param addr1 The second octet of the IP address.
905 * \param addr2 The third octet of the IP address.
906 * \param addr3 The forth octet of the IP address.
907 *
908 * \hideinitializer
909 */
910 #define uip_ipaddr(addr, addr0,addr1,addr2,addr3) do { \
911 (addr)->u8[0] = addr0; \
912 (addr)->u8[1] = addr1; \
913 (addr)->u8[2] = addr2; \
914 (addr)->u8[3] = addr3; \
915 } while(0)
916
917 /**
918 * Construct an IPv6 address from eight 16-bit words.
919 *
920 * This function constructs an IPv6 address.
921 *
922 * \hideinitializer
923 */
924 #define uip_ip6addr(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7) do { \
925 (addr)->u16[0] = HTONS(addr0); \
926 (addr)->u16[1] = HTONS(addr1); \
927 (addr)->u16[2] = HTONS(addr2); \
928 (addr)->u16[3] = HTONS(addr3); \
929 (addr)->u16[4] = HTONS(addr4); \
930 (addr)->u16[5] = HTONS(addr5); \
931 (addr)->u16[6] = HTONS(addr6); \
932 (addr)->u16[7] = HTONS(addr7); \
933 } while(0)
934
935 /**
936 * Construct an IPv6 address from sixteen 8-bit words.
937 *
938 * This function constructs an IPv6 address.
939 *
940 * \hideinitializer
941 */
942 #define uip_ip6addr_u8(addr, addr0,addr1,addr2,addr3,addr4,addr5,addr6,addr7,addr8,addr9,addr10,addr11,addr12,addr13,addr14,addr15) do { \
943 (addr)->u8[0] = addr0; \
944 (addr)->u8[1] = addr1; \
945 (addr)->u8[2] = addr2; \
946 (addr)->u8[3] = addr3; \
947 (addr)->u8[4] = addr4; \
948 (addr)->u8[5] = addr5; \
949 (addr)->u8[6] = addr6; \
950 (addr)->u8[7] = addr7; \
951 (addr)->u8[8] = addr8; \
952 (addr)->u8[9] = addr9; \
953 (addr)->u8[10] = addr10; \
954 (addr)->u8[11] = addr11; \
955 (addr)->u8[12] = addr12; \
956 (addr)->u8[13] = addr13; \
957 (addr)->u8[14] = addr14; \
958 (addr)->u8[15] = addr15; \
959 } while(0)
960
961
962 /**
963 * Copy an IP address to another IP address.
964 *
965 * Copies an IP address from one place to another.
966 *
967 * Example:
968 \code
969 uip_ipaddr_t ipaddr1, ipaddr2;
970
971 uip_ipaddr(&ipaddr1, 192,16,1,2);
972 uip_ipaddr_copy(&ipaddr2, &ipaddr1);
973 \endcode
974 *
975 * \param dest The destination for the copy.
976 * \param src The source from where to copy.
977 *
978 * \hideinitializer
979 */
980 #ifndef uip_ipaddr_copy
981 #define uip_ipaddr_copy(dest, src) (*(dest) = *(src))
982 #endif
983
984 /**
985 * Compare two IP addresses
986 *
987 * Compares two IP addresses.
988 *
989 * Example:
990 \code
991 uip_ipaddr_t ipaddr1, ipaddr2;
992
993 uip_ipaddr(&ipaddr1, 192,16,1,2);
994 if(uip_ipaddr_cmp(&ipaddr2, &ipaddr1)) {
995 printf("They are the same");
996 }
997 \endcode
998 *
999 * \param addr1 The first IP address.
1000 * \param addr2 The second IP address.
1001 *
1002 * \hideinitializer
1003 */
1004 #if !UIP_CONF_IPV6
1005 #define uip_ipaddr_cmp(addr1, addr2) ((addr1)->u16[0] == (addr2)->u16[0] && \
1006 (addr1)->u16[1] == (addr2)->u16[1])
1007 #else /* !UIP_CONF_IPV6 */
1008 #define uip_ipaddr_cmp(addr1, addr2) (memcmp(addr1, addr2, sizeof(uip_ip6addr_t)) == 0)
1009 #endif /* !UIP_CONF_IPV6 */
1010
1011 /**
1012 * Compare two IP addresses with netmasks
1013 *
1014 * Compares two IP addresses with netmasks. The masks are used to mask
1015 * out the bits that are to be compared.
1016 *
1017 * Example:
1018 \code
1019 uip_ipaddr_t ipaddr1, ipaddr2, mask;
1020
1021 uip_ipaddr(&mask, 255,255,255,0);
1022 uip_ipaddr(&ipaddr1, 192,16,1,2);
1023 uip_ipaddr(&ipaddr2, 192,16,1,3);
1024 if(uip_ipaddr_maskcmp(&ipaddr1, &ipaddr2, &mask)) {
1025 printf("They are the same");
1026 }
1027 \endcode
1028 *
1029 * \param addr1 The first IP address.
1030 * \param addr2 The second IP address.
1031 * \param mask The netmask.
1032 *
1033 * \hideinitializer
1034 */
1035 #if !UIP_CONF_IPV6
1036 #define uip_ipaddr_maskcmp(addr1, addr2, mask) \
1037 (((((u16_t *)addr1)[0] & ((u16_t *)mask)[0]) == \
1038 (((u16_t *)addr2)[0] & ((u16_t *)mask)[0])) && \
1039 ((((u16_t *)addr1)[1] & ((u16_t *)mask)[1]) == \
1040 (((u16_t *)addr2)[1] & ((u16_t *)mask)[1])))
1041 #else
1042 #define uip_ipaddr_prefixcmp(addr1, addr2, length) (memcmp(addr1, addr2, length>>3) == 0)
1043 #endif
1044
1045
1046 /**
1047 * Check if an address is a broadcast address for a network.
1048 *
1049 * Checks if an address is the broadcast address for a network. The
1050 * network is defined by an IP address that is on the network and the
1051 * network's netmask.
1052 *
1053 * \param addr The IP address.
1054 * \param netaddr The network's IP address.
1055 * \param netmask The network's netmask.
1056 *
1057 * \hideinitializer
1058 */
1059 /*#define uip_ipaddr_isbroadcast(addr, netaddr, netmask)
1060 ((uip_ipaddr_t *)(addr)).u16 & ((uip_ipaddr_t *)(addr)).u16*/
1061
1062
1063
1064 /**
1065 * Mask out the network part of an IP address.
1066 *
1067 * Masks out the network part of an IP address, given the address and
1068 * the netmask.
1069 *
1070 * Example:
1071 \code
1072 uip_ipaddr_t ipaddr1, ipaddr2, netmask;
1073
1074 uip_ipaddr(&ipaddr1, 192,16,1,2);
1075 uip_ipaddr(&netmask, 255,255,255,0);
1076 uip_ipaddr_mask(&ipaddr2, &ipaddr1, &netmask);
1077 \endcode
1078 *
1079 * In the example above, the variable "ipaddr2" will contain the IP
1080 * address 192.168.1.0.
1081 *
1082 * \param dest Where the result is to be placed.
1083 * \param src The IP address.
1084 * \param mask The netmask.
1085 *
1086 * \hideinitializer
1087 */
1088 #define uip_ipaddr_mask(dest, src, mask) do { \
1089 ((u16_t *)dest)[0] = ((u16_t *)src)[0] & ((u16_t *)mask)[0]; \
1090 ((u16_t *)dest)[1] = ((u16_t *)src)[1] & ((u16_t *)mask)[1]; \
1091 } while(0)
1092
1093 /**
1094 * Pick the first octet of an IP address.
1095 *
1096 * Picks out the first octet of an IP address.
1097 *
1098 * Example:
1099 \code
1100 uip_ipaddr_t ipaddr;
1101 u8_t octet;
1102
1103 uip_ipaddr(&ipaddr, 1,2,3,4);
1104 octet = uip_ipaddr1(&ipaddr);
1105 \endcode
1106 *
1107 * In the example above, the variable "octet" will contain the value 1.
1108 *
1109 * \hideinitializer
1110 */
1111 #define uip_ipaddr1(addr) ((addr)->u8[0])
1112
1113 /**
1114 * Pick the second octet of an IP address.
1115 *
1116 * Picks out the second octet of an IP address.
1117 *
1118 * Example:
1119 \code
1120 uip_ipaddr_t ipaddr;
1121 u8_t octet;
1122
1123 uip_ipaddr(&ipaddr, 1,2,3,4);
1124 octet = uip_ipaddr2(&ipaddr);
1125 \endcode
1126 *
1127 * In the example above, the variable "octet" will contain the value 2.
1128 *
1129 * \hideinitializer
1130 */
1131 #define uip_ipaddr2(addr) ((addr)->u8[1])
1132
1133 /**
1134 * Pick the third octet of an IP address.
1135 *
1136 * Picks out the third octet of an IP address.
1137 *
1138 * Example:
1139 \code
1140 uip_ipaddr_t ipaddr;
1141 u8_t octet;
1142
1143 uip_ipaddr(&ipaddr, 1,2,3,4);
1144 octet = uip_ipaddr3(&ipaddr);
1145 \endcode
1146 *
1147 * In the example above, the variable "octet" will contain the value 3.
1148 *
1149 * \hideinitializer
1150 */
1151 #define uip_ipaddr3(addr) ((addr)->u8[2])
1152
1153 /**
1154 * Pick the fourth octet of an IP address.
1155 *
1156 * Picks out the fourth octet of an IP address.
1157 *
1158 * Example:
1159 \code
1160 uip_ipaddr_t ipaddr;
1161 u8_t octet;
1162
1163 uip_ipaddr(&ipaddr, 1,2,3,4);
1164 octet = uip_ipaddr4(&ipaddr);
1165 \endcode
1166 *
1167 * In the example above, the variable "octet" will contain the value 4.
1168 *
1169 * \hideinitializer
1170 */
1171 #define uip_ipaddr4(addr) ((addr)->u8[3])
1172
1173 /**
1174 * Convert 16-bit quantity from host byte order to network byte order.
1175 *
1176 * This macro is primarily used for converting constants from host
1177 * byte order to network byte order. For converting variables to
1178 * network byte order, use the htons() function instead.
1179 *
1180 * \hideinitializer
1181 */
1182 #ifndef HTONS
1183 # if UIP_BYTE_ORDER == UIP_BIG_ENDIAN
1184 # define HTONS(n) (n)
1185 # define HTONL(n) (n)
1186 # else /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
1187 # define HTONS(n) (u16_t)((((u16_t) (n)) << 8) | (((u16_t) (n)) >> 8))
1188 # define HTONL(n) (((u32_t)HTONS(n) << 16) | HTONS((u32_t)(n) >> 16))
1189 # endif /* UIP_BYTE_ORDER == UIP_BIG_ENDIAN */
1190 #else
1191 #error "HTONS already defined!"
1192 #endif /* HTONS */
1193
1194 /**
1195 * Convert 16-bit quantity from host byte order to network byte order.
1196 *
1197 * This function is primarily used for converting variables from host
1198 * byte order to network byte order. For converting constants to
1199 * network byte order, use the HTONS() macro instead.
1200 */
1201 #ifndef htons
1202 u16_t htons(u16_t val);
1203 #endif /* htons */
1204 #ifndef ntohs
1205 #define ntohs htons
1206 #endif
1207
1208 #ifndef htonl
1209 u32_t htonl(u32_t val);
1210 #endif /* htonl */
1211 #ifndef ntohl
1212 #define ntohl htonl
1213 #endif
1214
1215 /** @} */
1216
1217 /**
1218 * Pointer to the application data in the packet buffer.
1219 *
1220 * This pointer points to the application data when the application is
1221 * called. If the application wishes to send data, the application may
1222 * use this space to write the data into before calling uip_send().
1223 */
1224 extern void *uip_appdata;
1225
1226 #if UIP_URGDATA > 0
1227 /* u8_t *uip_urgdata:
1228 *
1229 * This pointer points to any urgent data that has been received. Only
1230 * present if compiled with support for urgent data (UIP_URGDATA).
1231 */
1232 extern void *uip_urgdata;
1233 #endif /* UIP_URGDATA > 0 */
1234
1235
1236 /**
1237 * \defgroup uipdrivervars Variables used in uIP device drivers
1238 * @{
1239 *
1240 * uIP has a few global variables that are used in device drivers for
1241 * uIP.
1242 */
1243
1244 /**
1245 * The length of the packet in the uip_buf buffer.
1246 *
1247 * The global variable uip_len holds the length of the packet in the
1248 * uip_buf buffer.
1249 *
1250 * When the network device driver calls the uIP input function,
1251 * uip_len should be set to the length of the packet in the uip_buf
1252 * buffer.
1253 *
1254 * When sending packets, the device driver should use the contents of
1255 * the uip_len variable to determine the length of the outgoing
1256 * packet.
1257 *
1258 */
1259 extern u16_t uip_len;
1260
1261 /**
1262 * The length of the extension headers
1263 */
1264 extern u8_t uip_ext_len;
1265 /** @} */
1266
1267 #if UIP_URGDATA > 0
1268 extern u16_t uip_urglen, uip_surglen;
1269 #endif /* UIP_URGDATA > 0 */
1270
1271
1272 /**
1273 * Representation of a uIP TCP connection.
1274 *
1275 * The uip_conn structure is used for identifying a connection. All
1276 * but one field in the structure are to be considered read-only by an
1277 * application. The only exception is the appstate field whose purpose
1278 * is to let the application store application-specific state (e.g.,
1279 * file pointers) for the connection. The type of this field is
1280 * configured in the "uipopt.h" header file.
1281 */
1282 struct uip_conn {
1283 uip_ipaddr_t ripaddr; /**< The IP address of the remote host. */
1284
1285 u16_t lport; /**< The local TCP port, in network byte order. */
1286 u16_t rport; /**< The local remote TCP port, in network byte
1287 order. */
1288
1289 u8_t rcv_nxt[4]; /**< The sequence number that we expect to
1290 receive next. */
1291 u8_t snd_nxt[4]; /**< The sequence number that was last sent by
1292 us. */
1293 u16_t len; /**< Length of the data that was previously sent. */
1294 u16_t mss; /**< Current maximum segment size for the
1295 connection. */
1296 u16_t initialmss; /**< Initial maximum segment size for the
1297 connection. */
1298 u8_t sa; /**< Retransmission time-out calculation state
1299 variable. */
1300 u8_t sv; /**< Retransmission time-out calculation state
1301 variable. */
1302 u8_t rto; /**< Retransmission time-out. */
1303 u8_t tcpstateflags; /**< TCP state and flags. */
1304 u8_t timer; /**< The retransmission timer. */
1305 u8_t nrtx; /**< The number of retransmissions for the last
1306 segment sent. */
1307
1308 /** The application state. */
1309 uip_tcp_appstate_t appstate;
1310 };
1311
1312
1313 /**
1314 * Pointer to the current TCP connection.
1315 *
1316 * The uip_conn pointer can be used to access the current TCP
1317 * connection.
1318 */
1319
1320 extern struct uip_conn *uip_conn;
1321 #if UIP_TCP
1322 /* The array containing all uIP connections. */
1323 extern struct uip_conn uip_conns[UIP_CONNS];
1324 #endif
1325
1326 /**
1327 * \addtogroup uiparch
1328 * @{
1329 */
1330
1331 /**
1332 * 4-byte array used for the 32-bit sequence number calculations.
1333 */
1334 extern u8_t uip_acc32[4];
1335 /** @} */
1336
1337 /**
1338 * Representation of a uIP UDP connection.
1339 */
1340 struct uip_udp_conn {
1341 uip_ipaddr_t ripaddr; /**< The IP address of the remote peer. */
1342 u16_t lport; /**< The local port number in network byte order. */
1343 u16_t rport; /**< The remote port number in network byte order. */
1344 u8_t ttl; /**< Default time-to-live. */
1345
1346 /** The application state. */
1347 uip_udp_appstate_t appstate;
1348 };
1349
1350 /**
1351 * The current UDP connection.
1352 */
1353 extern struct uip_udp_conn *uip_udp_conn;
1354 extern struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
1355
1356 struct uip_router {
1357 int (*activate)(void);
1358 int (*deactivate)(void);
1359 uip_ipaddr_t *(*lookup)(uip_ipaddr_t *destipaddr, uip_ipaddr_t *nexthop);
1360 };
1361
1362 #if UIP_CONF_ROUTER
1363 extern const struct uip_router *uip_router;
1364
1365 /**
1366 * uIP routing driver registration function.
1367 */
1368 void uip_router_register(const struct uip_router *router);
1369 #endif /*UIP_CONF_ROUTER*/
1370
1371 #if UIP_CONF_ICMP6
1372 struct uip_icmp6_conn {
1373 uip_icmp6_appstate_t appstate;
1374 };
1375 extern struct uip_icmp6_conn uip_icmp6_conns;
1376 #endif /*UIP_CONF_ICMP6*/
1377
1378 /**
1379 * The uIP TCP/IP statistics.
1380 *
1381 * This is the variable in which the uIP TCP/IP statistics are gathered.
1382 */
1383 #if UIP_STATISTICS == 1
1384 extern struct uip_stats uip_stat;
1385 #define UIP_STAT(s) s
1386 #else
1387 #define UIP_STAT(s)
1388 #endif /* UIP_STATISTICS == 1 */
1389
1390 /**
1391 * The structure holding the TCP/IP statistics that are gathered if
1392 * UIP_STATISTICS is set to 1.
1393 *
1394 */
1395 struct uip_stats {
1396 struct {
1397 uip_stats_t recv; /**< Number of received packets at the IP
1398 layer. */
1399 uip_stats_t sent; /**< Number of sent packets at the IP
1400 layer. */
1401 uip_stats_t forwarded;/**< Number of forwarded packets at the IP
1402 layer. */
1403 uip_stats_t drop; /**< Number of dropped packets at the IP
1404 layer. */
1405 uip_stats_t vhlerr; /**< Number of packets dropped due to wrong
1406 IP version or header length. */
1407 uip_stats_t hblenerr; /**< Number of packets dropped due to wrong
1408 IP length, high byte. */
1409 uip_stats_t lblenerr; /**< Number of packets dropped due to wrong
1410 IP length, low byte. */
1411 uip_stats_t fragerr; /**< Number of packets dropped since they
1412 were IP fragments. */
1413 uip_stats_t chkerr; /**< Number of packets dropped due to IP
1414 checksum errors. */
1415 uip_stats_t protoerr; /**< Number of packets dropped since they
1416 were neither ICMP, UDP nor TCP. */
1417 } ip; /**< IP statistics. */
1418 struct {
1419 uip_stats_t recv; /**< Number of received ICMP packets. */
1420 uip_stats_t sent; /**< Number of sent ICMP packets. */
1421 uip_stats_t drop; /**< Number of dropped ICMP packets. */
1422 uip_stats_t typeerr; /**< Number of ICMP packets with a wrong
1423 type. */
1424 uip_stats_t chkerr; /**< Number of ICMP packets with a bad
1425 checksum. */
1426 } icmp; /**< ICMP statistics. */
1427 #if UIP_TCP
1428 struct {
1429 uip_stats_t recv; /**< Number of received TCP segments. */
1430 uip_stats_t sent; /**< Number of sent TCP segments. */
1431 uip_stats_t drop; /**< Number of dropped TCP segments. */
1432 uip_stats_t chkerr; /**< Number of TCP segments with a bad
1433 checksum. */
1434 uip_stats_t ackerr; /**< Number of TCP segments with a bad ACK
1435 number. */
1436 uip_stats_t rst; /**< Number of received TCP RST (reset) segments. */
1437 uip_stats_t rexmit; /**< Number of retransmitted TCP segments. */
1438 uip_stats_t syndrop; /**< Number of dropped SYNs due to too few
1439 connections was available. */
1440 uip_stats_t synrst; /**< Number of SYNs for closed ports,
1441 triggering a RST. */
1442 } tcp; /**< TCP statistics. */
1443 #endif
1444 #if UIP_UDP
1445 struct {
1446 uip_stats_t drop; /**< Number of dropped UDP segments. */
1447 uip_stats_t recv; /**< Number of received UDP segments. */
1448 uip_stats_t sent; /**< Number of sent UDP segments. */
1449 uip_stats_t chkerr; /**< Number of UDP segments with a bad
1450 checksum. */
1451 } udp; /**< UDP statistics. */
1452 #endif /* UIP_UDP */
1453 #if UIP_CONF_IPV6
1454 struct {
1455 uip_stats_t drop; /**< Number of dropped ND6 packets. */
1456 uip_stats_t recv; /**< Number of received ND6 packets */
1457 uip_stats_t sent; /**< Number of sent ND6 packets */
1458 } nd6;
1459 #endif /*UIP_CONF_IPV6*/
1460 };
1461
1462
1463 /*---------------------------------------------------------------------------*/
1464 /* All the stuff below this point is internal to uIP and should not be
1465 * used directly by an application or by a device driver.
1466 */
1467 /*---------------------------------------------------------------------------*/
1468
1469
1470
1471 /* u8_t uip_flags:
1472 *
1473 * When the application is called, uip_flags will contain the flags
1474 * that are defined in this file. Please read below for more
1475 * information.
1476 */
1477 extern u8_t uip_flags;
1478
1479 /* The following flags may be set in the global variable uip_flags
1480 before calling the application callback. The UIP_ACKDATA,
1481 UIP_NEWDATA, and UIP_CLOSE flags may both be set at the same time,
1482 whereas the others are mutually exclusive. Note that these flags
1483 should *NOT* be accessed directly, but only through the uIP
1484 functions/macros. */
1485
1486 #define UIP_ACKDATA 1 /* Signifies that the outstanding data was
1487 acked and the application should send
1488 out new data instead of retransmitting
1489 the last data. */
1490 #define UIP_NEWDATA 2 /* Flags the fact that the peer has sent
1491 us new data. */
1492 #define UIP_REXMIT 4 /* Tells the application to retransmit the
1493 data that was last sent. */
1494 #define UIP_POLL 8 /* Used for polling the application, to
1495 check if the application has data that
1496 it wants to send. */
1497 #define UIP_CLOSE 16 /* The remote host has closed the
1498 connection, thus the connection has
1499 gone away. Or the application signals
1500 that it wants to close the
1501 connection. */
1502 #define UIP_ABORT 32 /* The remote host has aborted the
1503 connection, thus the connection has
1504 gone away. Or the application signals
1505 that it wants to abort the
1506 connection. */
1507 #define UIP_CONNECTED 64 /* We have got a connection from a remote
1508 host and have set up a new connection
1509 for it, or an active connection has
1510 been successfully established. */
1511
1512 #define UIP_TIMEDOUT 128 /* The connection has been aborted due to
1513 too many retransmissions. */
1514
1515
1516 /**
1517 * \brief process the options within a hop by hop or destination option header
1518 * \retval 0: nothing to send,
1519 * \retval 1: drop pkt
1520 * \retval 2: ICMP error message to send
1521 */
1522 /*static u8_t
1523 uip_ext_hdr_options_process(); */
1524
1525 /* uip_process(flag):
1526 *
1527 * The actual uIP function which does all the work.
1528 */
1529 void uip_process(u8_t flag);
1530
1531 /* The following flags are passed as an argument to the uip_process()
1532 function. They are used to distinguish between the two cases where
1533 uip_process() is called. It can be called either because we have
1534 incoming data that should be processed, or because the periodic
1535 timer has fired. These values are never used directly, but only in
1536 the macros defined in this file. */
1537
1538 #define UIP_DATA 1 /* Tells uIP that there is incoming
1539 data in the uip_buf buffer. The
1540 length of the data is stored in the
1541 global variable uip_len. */
1542 #define UIP_TIMER 2 /* Tells uIP that the periodic timer
1543 has fired. */
1544 #define UIP_POLL_REQUEST 3 /* Tells uIP that a connection should
1545 be polled. */
1546 #define UIP_UDP_SEND_CONN 4 /* Tells uIP that a UDP datagram
1547 should be constructed in the
1548 uip_buf buffer. */
1549 #if UIP_UDP
1550 #define UIP_UDP_TIMER 5
1551 #endif /* UIP_UDP */
1552
1553 /* The TCP states used in the uip_conn->tcpstateflags. */
1554 #define UIP_CLOSED 0
1555 #define UIP_SYN_RCVD 1
1556 #define UIP_SYN_SENT 2
1557 #define UIP_ESTABLISHED 3
1558 #define UIP_FIN_WAIT_1 4
1559 #define UIP_FIN_WAIT_2 5
1560 #define UIP_CLOSING 6
1561 #define UIP_TIME_WAIT 7
1562 #define UIP_LAST_ACK 8
1563 #define UIP_TS_MASK 15
1564
1565 #define UIP_STOPPED 16
1566
1567 /* The TCP and IP headers. */
1568 struct uip_tcpip_hdr {
1569 #if UIP_CONF_IPV6
1570 /* IPv6 header. */
1571 u8_t vtc,
1572 tcflow;
1573 u16_t flow;
1574 u8_t len[2];
1575 u8_t proto, ttl;
1576 uip_ip6addr_t srcipaddr, destipaddr;
1577 #else /* UIP_CONF_IPV6 */
1578 /* IPv4 header. */
1579 u8_t vhl,
1580 tos,
1581 len[2],
1582 ipid[2],
1583 ipoffset[2],
1584 ttl,
1585 proto;
1586 u16_t ipchksum;
1587 uip_ipaddr_t srcipaddr, destipaddr;
1588 #endif /* UIP_CONF_IPV6 */
1589
1590 /* TCP header. */
1591 u16_t srcport,
1592 destport;
1593 u8_t seqno[4],
1594 ackno[4],
1595 tcpoffset,
1596 flags,
1597 wnd[2];
1598 u16_t tcpchksum;
1599 u8_t urgp[2];
1600 u8_t optdata[4];
1601 };
1602
1603 /* The ICMP and IP headers. */
1604 struct uip_icmpip_hdr {
1605 #if UIP_CONF_IPV6
1606 /* IPv6 header. */
1607 u8_t vtc,
1608 tcf;
1609 u16_t flow;
1610 u8_t len[2];
1611 u8_t proto, ttl;
1612 uip_ip6addr_t srcipaddr, destipaddr;
1613 #else /* UIP_CONF_IPV6 */
1614 /* IPv4 header. */
1615 u8_t vhl,
1616 tos,
1617 len[2],
1618 ipid[2],
1619 ipoffset[2],
1620 ttl,
1621 proto;
1622 u16_t ipchksum;
1623 uip_ipaddr_t srcipaddr, destipaddr;
1624 #endif /* UIP_CONF_IPV6 */
1625
1626 /* ICMP header. */
1627 u8_t type, icode;
1628 u16_t icmpchksum;
1629 #if !UIP_CONF_IPV6
1630 u16_t id, seqno;
1631 u8_t payload[1];
1632 #endif /* !UIP_CONF_IPV6 */
1633 };
1634
1635
1636 /* The UDP and IP headers. */
1637 struct uip_udpip_hdr {
1638 #if UIP_CONF_IPV6
1639 /* IPv6 header. */
1640 u8_t vtc,
1641 tcf;
1642 u16_t flow;
1643 u8_t len[2];
1644 u8_t proto, ttl;
1645 uip_ip6addr_t srcipaddr, destipaddr;
1646 #else /* UIP_CONF_IPV6 */
1647 /* IP header. */
1648 u8_t vhl,
1649 tos,
1650 len[2],
1651 ipid[2],
1652 ipoffset[2],
1653 ttl,
1654 proto;
1655 u16_t ipchksum;
1656 uip_ipaddr_t srcipaddr, destipaddr;
1657 #endif /* UIP_CONF_IPV6 */
1658
1659 /* UDP header. */
1660 u16_t srcport,
1661 destport;
1662 u16_t udplen;
1663 u16_t udpchksum;
1664 };
1665
1666 /*
1667 * In IPv6 the length of the L3 headers before the transport header is
1668 * not fixed, due to the possibility to include extension option headers
1669 * after the IP header. hence we split here L3 and L4 headers
1670 */
1671 /* The IP header */
1672 struct uip_ip_hdr {
1673 #if UIP_CONF_IPV6
1674 /* IPV6 header */
1675 u8_t vtc;
1676 u8_t tcflow;
1677 u16_t flow;
1678 u8_t len[2];
1679 u8_t proto, ttl;
1680 uip_ip6addr_t srcipaddr, destipaddr;
1681 #else /* UIP_CONF_IPV6 */
1682 /* IPV4 header */
1683 u8_t vhl,
1684 tos,
1685 len[2],
1686 ipid[2],
1687 ipoffset[2],
1688 ttl,
1689 proto;
1690 u16_t ipchksum;
1691 uip_ipaddr_t srcipaddr, destipaddr;
1692 #endif /* UIP_CONF_IPV6 */
1693 };
1694
1695
1696 /*
1697 * IPv6 extension option headers: we are able to process
1698 * the 4 extension headers defined in RFC2460 (IPv6):
1699 * - Hop by hop option header, destination option header:
1700 * These two are not used by any core IPv6 protocol, hence
1701 * we just read them and go to the next. They convey options,
1702 * the options defined in RFC2460 are Pad1 and PadN, which do
1703 * some padding, and that we do not need to read (the length
1704 * field in the header is enough)
1705 * - Routing header: this one is most notably used by MIPv6,
1706 * which we do not implement, hence we just read it and go
1707 * to the next
1708 * - Fragmentation header: we read this header and are able to
1709 * reassemble packets
1710 *
1711 * We do not offer any means to send packets with extension headers
1712 *
1713 * We do not implement Authentication and ESP headers, which are
1714 * used in IPSec and defined in RFC4302,4303,4305,4385
1715 */
1716 /* common header part */
1717 struct uip_ext_hdr {
1718 u8_t next;
1719 u8_t len;
1720 };
1721
1722 /* Hop by Hop option header */
1723 struct uip_hbho_hdr {
1724 u8_t next;
1725 u8_t len;
1726 };
1727
1728 /* destination option header */
1729 struct uip_desto_hdr {
1730 u8_t next;
1731 u8_t len;
1732 };
1733
1734 /* We do not define structures for PAD1 and PADN options */
1735
1736 /*
1737 * routing header
1738 * the routing header as 4 common bytes, then routing header type
1739 * specific data there are several types of routing header. Type 0 was
1740 * deprecated as per RFC5095 most notable other type is 2, used in
1741 * RFC3775 (MIPv6) here we do not implement MIPv6, so we just need to
1742 * parse the 4 first bytes
1743 */
1744 struct uip_routing_hdr {
1745 u8_t next;
1746 u8_t len;
1747 u8_t routing_type;
1748 u8_t seg_left;
1749 };
1750
1751 /* fragmentation header */
1752 struct uip_frag_hdr {
1753 u8_t next;
1754 u8_t res;
1755 u16_t offsetresmore;
1756 u32_t id;
1757 };
1758
1759 /*
1760 * an option within the destination or hop by hop option headers
1761 * it contains type an length, which is true for all options but PAD1
1762 */
1763 struct uip_ext_hdr_opt {
1764 u8_t type;
1765 u8_t len;
1766 };
1767
1768 /* PADN option */
1769 struct uip_ext_hdr_opt_padn {
1770 u8_t opt_type;
1771 u8_t opt_len;
1772 };
1773
1774 /* TCP header */
1775 struct uip_tcp_hdr {
1776 u16_t srcport;
1777 u16_t destport;
1778 u8_t seqno[4];
1779 u8_t ackno[4];
1780 u8_t tcpoffset;
1781 u8_t flags;
1782 u8_t wnd[2];
1783 u16_t tcpchksum;
1784 u8_t urgp[2];
1785 u8_t optdata[4];
1786 };
1787
1788 /* The ICMP headers. */
1789 struct uip_icmp_hdr {
1790 u8_t type, icode;
1791 u16_t icmpchksum;
1792 #if !UIP_CONF_IPV6
1793 u16_t id, seqno;
1794 #endif /* !UIP_CONF_IPV6 */
1795 };
1796
1797
1798 /* The UDP headers. */
1799 struct uip_udp_hdr {
1800 u16_t srcport;
1801 u16_t destport;
1802 u16_t udplen;
1803 u16_t udpchksum;
1804 };
1805
1806
1807 /**
1808 * The buffer size available for user data in the \ref uip_buf buffer.
1809 *
1810 * This macro holds the available size for user data in the \ref
1811 * uip_buf buffer. The macro is intended to be used for checking
1812 * bounds of available user data.
1813 *
1814 * Example:
1815 \code
1816 snprintf(uip_appdata, UIP_APPDATA_SIZE, "%u\n", i);
1817 \endcode
1818 *
1819 * \hideinitializer
1820 */
1821 #define UIP_APPDATA_SIZE (UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN)
1822 #define UIP_APPDATA_PTR (void *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]
1823
1824 #define UIP_PROTO_ICMP 1
1825 #define UIP_PROTO_TCP 6
1826 #define UIP_PROTO_UDP 17
1827 #define UIP_PROTO_ICMP6 58
1828
1829
1830 #if UIP_CONF_IPV6
1831 /** @{ */
1832 /** \brief extension headers types */
1833 #define UIP_PROTO_HBHO 0
1834 #define UIP_PROTO_DESTO 60
1835 #define UIP_PROTO_ROUTING 43
1836 #define UIP_PROTO_FRAG 44
1837 #define UIP_PROTO_NONE 59
1838 /** @} */
1839
1840 /** @{ */
1841 /** \brief Destination and Hop By Hop extension headers option types */
1842 #define UIP_EXT_HDR_OPT_PAD1 0
1843 #define UIP_EXT_HDR_OPT_PADN 1
1844 /** @} */
1845
1846 /** @{ */
1847 /**
1848 * \brief Bitmaps for extension header processing
1849 *
1850 * When processing extension headers, we should record somehow which one we
1851 * see, because you cannot have twice the same header, except for destination
1852 * We store all this in one u8_t bitmap one bit for each header expected. The
1853 * order in the bitmap is the order recommended in RFC2460
1854 */
1855 #define UIP_EXT_HDR_BITMAP_HBHO 0x01
1856 #define UIP_EXT_HDR_BITMAP_DESTO1 0x02
1857 #define UIP_EXT_HDR_BITMAP_ROUTING 0x04
1858 #define UIP_EXT_HDR_BITMAP_FRAG 0x08
1859 #define UIP_EXT_HDR_BITMAP_AH 0x10
1860 #define UIP_EXT_HDR_BITMAP_ESP 0x20
1861 #define UIP_EXT_HDR_BITMAP_DESTO2 0x40
1862 /** @} */
1863
1864
1865 #endif /* UIP_CONF_IPV6 */
1866
1867
1868 /* Header sizes. */
1869 #if UIP_CONF_IPV6
1870 #define UIP_IPH_LEN 40
1871 #define UIP_FRAGH_LEN 8
1872 #else /* UIP_CONF_IPV6 */
1873 #define UIP_IPH_LEN 20 /* Size of IP header */
1874 #endif /* UIP_CONF_IPV6 */
1875
1876 #define UIP_UDPH_LEN 8 /* Size of UDP header */
1877 #define UIP_TCPH_LEN 20 /* Size of TCP header */
1878 #ifdef UIP_IPH_LEN
1879 #define UIP_ICMPH_LEN 4 /* Size of ICMP header */
1880 #endif
1881 #define UIP_IPUDPH_LEN (UIP_UDPH_LEN + UIP_IPH_LEN) /* Size of IP +
1882 * UDP
1883 * header */
1884 #define UIP_IPTCPH_LEN (UIP_TCPH_LEN + UIP_IPH_LEN) /* Size of IP +
1885 * TCP
1886 * header */
1887 #define UIP_TCPIP_HLEN UIP_IPTCPH_LEN
1888 #define UIP_IPICMPH_LEN (UIP_IPH_LEN + UIP_ICMPH_LEN) /* size of ICMP
1889 + IP header */
1890 #define UIP_LLIPH_LEN (UIP_LLH_LEN + UIP_IPH_LEN) /* size of L2
1891 + IP header */
1892 #if UIP_CONF_IPV6
1893 /**
1894 * The sums below are quite used in ND. When used for uip_buf, we
1895 * include link layer length when used for uip_len, we do not, hence
1896 * we need values with and without LLH_LEN we do not use capital
1897 * letters as these values are variable
1898 */
1899 #define uip_l2_l3_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len)
1900 #define uip_l2_l3_icmp_hdr_len (UIP_LLH_LEN + UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN)
1901 #define uip_l3_hdr_len (UIP_IPH_LEN + uip_ext_len)
1902 #define uip_l3_icmp_hdr_len (UIP_IPH_LEN + uip_ext_len + UIP_ICMPH_LEN)
1903 #endif /*UIP_CONF_IPV6*/
1904
1905
1906 #if UIP_FIXEDADDR
1907 extern const uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
1908 #else /* UIP_FIXEDADDR */
1909 extern uip_ipaddr_t uip_hostaddr, uip_netmask, uip_draddr;
1910 #endif /* UIP_FIXEDADDR */
1911 extern const uip_ipaddr_t uip_broadcast_addr;
1912 extern const uip_ipaddr_t uip_all_zeroes_addr;
1913
1914 #if UIP_FIXEDETHADDR
1915 extern const uip_lladdr_t uip_lladdr;
1916 #else
1917 extern uip_lladdr_t uip_lladdr;
1918 #endif
1919
1920
1921
1922
1923 #ifdef UIP_CONF_IPV6
1924 /**
1925 * \brief Is IPv6 address a the unspecified address
1926 * a is of type uip_ipaddr_t
1927 */
1928 #define uip_is_addr_unspecified(a) \
1929 ((((a)->u16[0]) == 0) && \
1930 (((a)->u16[1]) == 0) && \
1931 (((a)->u16[2]) == 0) && \
1932 (((a)->u16[3]) == 0) && \
1933 (((a)->u16[4]) == 0) && \
1934 (((a)->u16[5]) == 0) && \
1935 (((a)->u16[6]) == 0) && \
1936 (((a)->u16[7]) == 0))
1937
1938 /** \brief Is IPv6 address a the link local all-nodes multicast address */
1939 #define uip_is_addr_linklocal_allnodes_mcast(a) \
1940 ((((a)->u8[0]) == 0xff) && \
1941 (((a)->u8[1]) == 0x02) && \
1942 (((a)->u16[1]) == 0) && \
1943 (((a)->u16[2]) == 0) && \
1944 (((a)->u16[3]) == 0) && \
1945 (((a)->u16[4]) == 0) && \
1946 (((a)->u16[5]) == 0) && \
1947 (((a)->u16[6]) == 0) && \
1948 (((a)->u8[14]) == 0) && \
1949 (((a)->u8[15]) == 0x01))
1950
1951 /** \brief set IP address a to unspecified */
1952 #define uip_create_unspecified(a) uip_ip6addr(a, 0, 0, 0, 0, 0, 0, 0, 0)
1953
1954 /** \brief set IP address a to the link local all-nodes multicast address */
1955 #define uip_create_linklocal_allnodes_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0001)
1956
1957 /** \brief set IP address a to the link local all-routers multicast address */
1958 #define uip_create_linklocal_allrouters_mcast(a) uip_ip6addr(a, 0xff02, 0, 0, 0, 0, 0, 0, 0x0002)
1959
1960 /**
1961 * \brief is addr (a) a solicited node multicast address, see RFC3513
1962 * a is of type uip_ipaddr_t*
1963 */
1964 #define uip_is_addr_solicited_node(a) \
1965 ((((a)->u8[0]) == 0xFF) && \
1966 (((a)->u8[1]) == 0x02) && \
1967 (((a)->u16[1]) == 0) && \
1968 (((a)->u16[2]) == 0) && \
1969 (((a)->u16[3]) == 0) && \
1970 (((a)->u16[4]) == 0) && \
1971 (((a)->u16[5]) == 1) && \
1972 (((a)->u8[12]) == 0xFF))
1973
1974 /**
1975 * \briefput in b the solicited node address corresponding to address a
1976 * both a and b are of type uip_ipaddr_t*
1977 * */
1978 #define uip_create_solicited_node(a, b) \
1979 (((b)->u8[0]) = 0xFF); \
1980 (((b)->u8[1]) = 0x02); \
1981 (((b)->u16[1]) = 0); \
1982 (((b)->u16[2]) = 0); \
1983 (((b)->u16[3]) = 0); \
1984 (((b)->u16[4]) = 0); \
1985 (((b)->u8[10]) = 0); \
1986 (((b)->u8[11]) = 0x01); \
1987 (((b)->u8[12]) = 0xFF); \
1988 (((b)->u8[13]) = ((a)->u8[13])); \
1989 (((b)->u16[7]) = ((a)->u16[7]))
1990
1991 /**
1992 * \brief is addr (a) a link local unicast address, see RFC3513
1993 * i.e. is (a) on prefix FE80::/10
1994 * a is of type uip_ipaddr_t*
1995 */
1996 #define uip_is_addr_link_local(a) \
1997 ((((a)->u8[0]) == 0xFE) && \
1998 (((a)->u8[1]) == 0x80))
1999
2000 /**
2001 * \brief was addr (a) forged based on the mac address m
2002 * a type is uip_ipaddr_t
2003 * m type is uiplladdr_t
2004 */
2005 #if UIP_CONF_LL_802154
2006 #define uip_is_addr_mac_addr_based(a, m) \
2007 ((((a)->u8[8]) == (((m)->addr[0]) ^ 0x02)) && \
2008 (((a)->u8[9]) == (m)->addr[1]) && \
2009 (((a)->u8[10]) == (m)->addr[2]) && \
2010 (((a)->u8[11]) == (m)->addr[3]) && \
2011 (((a)->u8[12]) == (m)->addr[4]) && \
2012 (((a)->u8[13]) == (m)->addr[5]) && \
2013 (((a)->u8[14]) == (m)->addr[6]) && \
2014 (((a)->u8[15]) == (m)->addr[7]))
2015 #else
2016
2017 #define uip_is_addr_mac_addr_based(a, m) \
2018 ((((a)->u8[8]) == (((m)->addr[0]) | 0x02)) && \
2019 (((a)->u8[9]) == (m)->addr[1]) && \
2020 (((a)->u8[10]) == (m)->addr[2]) && \
2021 (((a)->u8[11]) == 0xff) && \
2022 (((a)->u8[12]) == 0xfe) && \
2023 (((a)->u8[13]) == (m)->addr[3]) && \
2024 (((a)->u8[14]) == (m)->addr[4]) && \
2025 (((a)->u8[15]) == (m)->addr[5]))
2026
2027 #endif /*UIP_CONF_LL_802154*/
2028
2029 /**
2030 * \brief is address a multicast address, see RFC 3513
2031 * a is of type uip_ipaddr_t*
2032 * */
2033 #define uip_is_addr_mcast(a) \
2034 (((a)->u8[0]) == 0xFF)
2035
2036 /**
2037 * \brief is group-id of multicast address a
2038 * the all nodes group-id
2039 */
2040 #define uip_is_mcast_group_id_all_nodes(a) \
2041 ((((a)->u16[1]) == 0) && \
2042 (((a)->u16[2]) == 0) && \
2043 (((a)->u16[3]) == 0) && \
2044 (((a)->u16[4]) == 0) && \
2045 (((a)->u16[5]) == 0) && \
2046 (((a)->u16[6]) == 0) && \
2047 (((a)->u8[14]) == 0) && \
2048 (((a)->u8[15]) == 1))
2049
2050 /**
2051 * \brief is group-id of multicast address a
2052 * the all routers group-id
2053 */
2054 #define uip_is_mcast_group_id_all_routers(a) \
2055 ((((a)->u16[1]) == 0) && \
2056 (((a)->u16[2]) == 0) && \
2057 (((a)->u16[3]) == 0) && \
2058 (((a)->u16[4]) == 0) && \
2059 (((a)->u16[5]) == 0) && \
2060 (((a)->u16[6]) == 0) && \
2061 (((a)->u8[14]) == 0) && \
2062 (((a)->u8[15]) == 2))
2063
2064
2065 #endif /*UIP_CONF_IPV6*/
2066
2067 /**
2068 * Calculate the Internet checksum over a buffer.
2069 *
2070 * The Internet checksum is the one's complement of the one's
2071 * complement sum of all 16-bit words in the buffer.
2072 *
2073 * See RFC1071.
2074 *
2075 * \param buf A pointer to the buffer over which the checksum is to be
2076 * computed.
2077 *
2078 * \param len The length of the buffer over which the checksum is to
2079 * be computed.
2080 *
2081 * \return The Internet checksum of the buffer.
2082 */
2083 u16_t uip_chksum(u16_t *buf, u16_t len);
2084
2085 /**
2086 * Calculate the IP header checksum of the packet header in uip_buf.
2087 *
2088 * The IP header checksum is the Internet checksum of the 20 bytes of
2089 * the IP header.
2090 *
2091 * \return The IP header checksum of the IP header in the uip_buf
2092 * buffer.
2093 */
2094 u16_t uip_ipchksum(void);
2095
2096 /**
2097 * Calculate the TCP checksum of the packet in uip_buf and uip_appdata.
2098 *
2099 * The TCP checksum is the Internet checksum of data contents of the
2100 * TCP segment, and a pseudo-header as defined in RFC793.
2101 *
2102 * \return The TCP checksum of the TCP segment in uip_buf and pointed
2103 * to by uip_appdata.
2104 */
2105 u16_t uip_tcpchksum(void);
2106
2107 /**
2108 * Calculate the UDP checksum of the packet in uip_buf and uip_appdata.
2109 *
2110 * The UDP checksum is the Internet checksum of data contents of the
2111 * UDP segment, and a pseudo-header as defined in RFC768.
2112 *
2113 * \return The UDP checksum of the UDP segment in uip_buf and pointed
2114 * to by uip_appdata.
2115 */
2116 u16_t uip_udpchksum(void);
2117
2118 /**
2119 * Calculate the ICMP checksum of the packet in uip_buf.
2120 *
2121 * \return The ICMP checksum of the ICMP packet in uip_buf
2122 */
2123 u16_t uip_icmp6chksum(void);
2124
2125
2126 #endif /* __UIP_H__ */
2127
2128
2129 /** @} */
2130
Imprint / Impressum