/** ****************************************************************************** * @file system_stm32f1xx.c * @author MCD Application Team * @version V4.0.0 * @date 16-December-2014 * @brief CMSIS Cortex-M3 Device Peripheral Access Layer System Source File. * * 1. This file provides two functions and one global variable to be called from * user application: * - SystemInit(): Setups the system clock (System clock source, PLL Multiplier * factors, AHB/APBx prescalers and Flash settings). * This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32f1xx_xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * 2. After each device reset the HSI (8 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32f1xx_xx.s" file, to * configure the system clock before to branch to main program. * * 4. The default value of HSE crystal is set to 8 MHz (or 25 MHz, depending on * the product used), refer to "HSE_VALUE". * When HSE is used as system clock source, directly or through PLL, and you * are using different crystal you have to adapt the HSE value to your own * configuration. * * This file configures the system clock as follows: *----------------------------------------------------------------------------- * System clock source | 1- PLL_HSE_EXTC | 3- PLL_HSI * | (external 8 MHz clock) | (internal 8 MHz) * | 2- PLL_HSE_XTAL | * | (external 8 MHz xtal) | *----------------------------------------------------------------------------- * SYSCLK(MHz) | 72 | 64 *----------------------------------------------------------------------------- * AHBCLK (MHz) | 72 | 64 *----------------------------------------------------------------------------- * APB1CLK (MHz) | 36 | 32 *----------------------------------------------------------------------------- * APB2CLK (MHz) | 72 | 64 *----------------------------------------------------------------------------- * USB capable (48 MHz precise clock) | NO | NO *----------------------------------------------------------------------------- ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2014 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32f1xx_system * @{ */ /** @addtogroup STM32F1xx_System_Private_Includes * @{ */ #include "stm32f1xx.h" #include "hal_tick.h" /** * @} */ /** @addtogroup STM32F1xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000) /*!< Default value of the External oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)8000000) /*!< Default value of the Internal oscillator in Hz. This value can be provided and adapted by the user application. */ #endif /* HSI_VALUE */ /*!< Uncomment the following line if you need to use external SRAM */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /* #define DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /*!< Uncomment the following line if you need to relocate your vector Table in Internal SRAM. */ /* #define VECT_TAB_SRAM */ #define VECT_TAB_OFFSET 0x0 /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Macros * @{ */ /* Select the clock sources (other than HSI) to start with (0=OFF, 1=ON) */ #define USE_PLL_HSE_EXTC (1) /* Use external clock */ #define USE_PLL_HSE_XTAL (1) /* Use external xtal */ /** * @} */ /** @addtogroup STM32F1xx_System_Private_Variables * @{ */ /******************************************************************************* * Clock Definitions *******************************************************************************/ #if defined(STM32F100xB) ||defined(STM32F100xE) uint32_t SystemCoreClock = 24000000; /*!< System Clock Frequency (Core Clock) */ #else /*!< HSI Selected as System Clock source */ uint32_t SystemCoreClock = 72000000; /*!< System Clock Frequency (Core Clock) */ #endif const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9}; /** * @} */ /** @addtogroup STM32F1xx_System_Private_FunctionPrototypes * @{ */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM static void SystemInit_ExtMemCtl(void); #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ #if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0) uint8_t SetSysClock_PLL_HSE(uint8_t bypass); #endif uint8_t SetSysClock_PLL_HSI(void); /** * @} */ /** @addtogroup STM32F1xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system * Initialize the Embedded Flash Interface, the PLL and update the * SystemCoreClock variable. * @note This function should be used only after reset. * @param None * @retval None */ void SystemInit (void) { /* Reset the RCC clock configuration to the default reset state(for debug purpose) */ /* Set HSION bit */ RCC->CR |= (uint32_t)0x00000001; /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */ #if !defined(STM32F105xC) && !defined(STM32F107xC) RCC->CFGR &= (uint32_t)0xF8FF0000; #else RCC->CFGR &= (uint32_t)0xF0FF0000; #endif /* STM32F105xC */ /* Reset HSEON, CSSON and PLLON bits */ RCC->CR &= (uint32_t)0xFEF6FFFF; /* Reset HSEBYP bit */ RCC->CR &= (uint32_t)0xFFFBFFFF; /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */ RCC->CFGR &= (uint32_t)0xFF80FFFF; #if defined(STM32F105xC) || defined(STM32F107xC) /* Reset PLL2ON and PLL3ON bits */ RCC->CR &= (uint32_t)0xEBFFFFFF; /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x00FF0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #elif defined(STM32F100xB) || defined(STM32F100xE) /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; /* Reset CFGR2 register */ RCC->CFGR2 = 0x00000000; #else /* Disable all interrupts and clear pending bits */ RCC->CIR = 0x009F0000; #endif /* STM32F105xC */ #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) #ifdef DATA_IN_ExtSRAM SystemInit_ExtMemCtl(); #endif /* DATA_IN_ExtSRAM */ #endif #ifdef VECT_TAB_SRAM SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */ #else SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */ #endif /* Configure the Cube driver */ SystemCoreClock = 8000000; // At this stage the HSI is used as system clock HAL_Init(); /* Configure the System clock source, PLL Multiplier and Divider factors, AHB/APBx prescalers and Flash settings */ SetSysClock(); /* Reset the timer to avoid issues after the RAM initialization */ TIM_MST_RESET_ON; TIM_MST_RESET_OFF; } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**) * or HSI_VALUE(*) multiplied by the PLL factors. * * (*) HSI_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSE_VALUE is a constant defined in stm32f1xx.h file (default value * 8 MHz or 25 MHz, depending on the product used), user has to ensure * that HSE_VALUE is same as the real frequency of the crystal used. * Otherwise, this function may have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * @param None * @retval None */ void SystemCoreClockUpdate (void) { uint32_t tmp = 0, pllmull = 0, pllsource = 0; #if defined(STM32F105xC) || defined(STM32F107xC) uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0; #endif /* STM32F105xC */ #if defined(STM32F100xB) || defined(STM32F100xE) uint32_t prediv1factor = 0; #endif /* STM32F100xB or STM32F100xE */ /* Get SYSCLK source -------------------------------------------------------*/ tmp = RCC->CFGR & RCC_CFGR_SWS; switch (tmp) { case 0x00: /* HSI used as system clock */ SystemCoreClock = HSI_VALUE; break; case 0x04: /* HSE used as system clock */ SystemCoreClock = HSE_VALUE; break; case 0x08: /* PLL used as system clock */ /* Get PLL clock source and multiplication factor ----------------------*/ pllmull = RCC->CFGR & RCC_CFGR_PLLMULL; pllsource = RCC->CFGR & RCC_CFGR_PLLSRC; #if !defined(STM32F105xC) && !defined(STM32F107xC) pllmull = ( pllmull >> 18) + 2; if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else { #if defined(STM32F100xB) || defined(STM32F100xE) prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; #else /* HSE selected as PLL clock entry */ if ((RCC->CFGR & RCC_CFGR_PLLXTPRE) != (uint32_t)RESET) {/* HSE oscillator clock divided by 2 */ SystemCoreClock = (HSE_VALUE >> 1) * pllmull; } else { SystemCoreClock = HSE_VALUE * pllmull; } #endif } #else pllmull = pllmull >> 18; if (pllmull != 0x0D) { pllmull += 2; } else { /* PLL multiplication factor = PLL input clock * 6.5 */ pllmull = 13 / 2; } if (pllsource == 0x00) { /* HSI oscillator clock divided by 2 selected as PLL clock entry */ SystemCoreClock = (HSI_VALUE >> 1) * pllmull; } else {/* PREDIV1 selected as PLL clock entry */ /* Get PREDIV1 clock source and division factor */ prediv1source = RCC->CFGR2 & RCC_CFGR2_PREDIV1SRC; prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1; if (prediv1source == 0) { /* HSE oscillator clock selected as PREDIV1 clock entry */ SystemCoreClock = (HSE_VALUE / prediv1factor) * pllmull; } else {/* PLL2 clock selected as PREDIV1 clock entry */ /* Get PREDIV2 division factor and PLL2 multiplication factor */ prediv2factor = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> 4) + 1; pll2mull = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> 8 ) + 2; SystemCoreClock = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull; } } #endif /* STM32F105xC */ break; default: SystemCoreClock = HSI_VALUE; break; } /* Compute HCLK clock frequency ----------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } #if defined(STM32F100xE) || defined(STM32F101xE) || defined(STM32F101xG) || defined(STM32F103xE) || defined(STM32F103xG) /** * @brief Setup the external memory controller. Called in startup_stm32f1xx.s * before jump to __main * @param None * @retval None */ #ifdef DATA_IN_ExtSRAM /** * @brief Setup the external memory controller. * Called in startup_stm32f1xx_xx.s/.c before jump to main. * This function configures the external SRAM mounted on STM3210E-EVAL * board (STM32 High density devices). This SRAM will be used as program * data memory (including heap and stack). * @param None * @retval None */ void SystemInit_ExtMemCtl(void) { __IO uint32_t tmpreg; /*!< FSMC Bank1 NOR/SRAM3 is used for the STM3210E-EVAL, if another Bank is required, then adjust the Register Addresses */ /* Enable FSMC clock */ RCC->AHBENR = 0x00000114; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHBENR, RCC_AHBENR_FSMCEN); /* Enable GPIOD, GPIOE, GPIOF and GPIOG clocks */ RCC->APB2ENR = 0x000001E0; /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->APB2ENR, RCC_APB2ENR_IOPDEN); (void)(tmpreg); /* --------------- SRAM Data lines, NOE and NWE configuration ---------------*/ /*---------------- SRAM Address lines configuration -------------------------*/ /*---------------- NOE and NWE configuration --------------------------------*/ /*---------------- NE3 configuration ----------------------------------------*/ /*---------------- NBL0, NBL1 configuration ---------------------------------*/ GPIOD->CRL = 0x44BB44BB; GPIOD->CRH = 0xBBBBBBBB; GPIOE->CRL = 0xB44444BB; GPIOE->CRH = 0xBBBBBBBB; GPIOF->CRL = 0x44BBBBBB; GPIOF->CRH = 0xBBBB4444; GPIOG->CRL = 0x44BBBBBB; GPIOG->CRH = 0x444B4B44; /*---------------- FSMC Configuration ---------------------------------------*/ /*---------------- Enable FSMC Bank1_SRAM Bank ------------------------------*/ FSMC_Bank1->BTCR[4] = 0x00001091; FSMC_Bank1->BTCR[5] = 0x00110212; } #endif /* DATA_IN_ExtSRAM */ #endif /* STM32F100xE || STM32F101xE || STM32F101xG || STM32F103xE || STM32F103xG */ /** * @brief Configures the System clock source, PLL Multiplier and Divider factors, * AHB/APBx prescalers and Flash settings * @note This function should be called only once the RCC clock configuration * is reset to the default reset state (done in SystemInit() function). * @param None * @retval None */ void SetSysClock(void) { /* 1- Try to start with HSE and external clock */ #if USE_PLL_HSE_EXTC != 0 if (SetSysClock_PLL_HSE(1) == 0) #endif { /* 2- If fail try to start with HSE and external xtal */ #if USE_PLL_HSE_XTAL != 0 if (SetSysClock_PLL_HSE(0) == 0) #endif { /* 3- If fail start with HSI clock */ if (SetSysClock_PLL_HSI() == 0) { while(1) { // [TODO] Put something here to tell the user that a problem occured... } } } } /* Output clock on MCO1 pin(PA8) for debugging purpose */ //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_SYSCLK, RCC_MCODIV_1); // 72 MHz or 64 MHz } #if (USE_PLL_HSE_XTAL != 0) || (USE_PLL_HSE_EXTC != 0) /******************************************************************************/ /* PLL (clocked by HSE) used as System clock source */ /******************************************************************************/ uint8_t SetSysClock_PLL_HSE(uint8_t bypass) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable HSE oscillator and activate PLL with HSE as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; if (bypass == 0) { RCC_OscInitStruct.HSEState = RCC_HSE_ON; /* External 8 MHz xtal on OSC_IN/OSC_OUT */ } else { RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; /* External 8 MHz clock on OSC_IN */ } RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; // 72 MHz (8 MHz * 9) if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { return 0; // FAIL } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; // 72 MHz RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; // 72 MHz RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; // 36 MHz RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 72 MHz if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { return 0; // FAIL } /* Output clock on MCO1 pin(PA8) for debugging purpose */ //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSE, RCC_MCODIV_1); // 8 MHz return 1; // OK } #endif /******************************************************************************/ /* PLL (clocked by HSI) used as System clock source */ /******************************************************************************/ uint8_t SetSysClock_PLL_HSI(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable HSI oscillator and activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSEState = RCC_HSE_OFF; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; // 64 MHz (8 MHz/2 * 16) if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { return 0; // FAIL } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; // 64 MHz RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; // 64 MHz RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; // 32 MHz RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; // 64 MHz if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { return 0; // FAIL } /* Output clock on MCO1 pin(PA8) for debugging purpose */ //HAL_RCC_MCOConfig(RCC_MCO1, RCC_MCO1SOURCE_HSI, RCC_MCODIV_1); // 8 MHz return 1; // OK } /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/