/** ****************************************************************************** * @file stm32f30x_tim.c * @author MCD Application Team * @version V1.1.0 * @date 27-February-2014 * @brief This file provides firmware functions to manage the following * functionalities of the TIM peripheral: * + TimeBase management * + Output Compare management * + Input Capture management * + Advanced-control timers (TIM1 and TIM8) specific features * + Interrupts, DMA and flags management * + Clocks management * + Synchronization management * + Specific interface management * + Specific remapping management * @verbatim ============================================================================== ##### How to use this driver ##### ============================================================================== [..] This driver provides functions to configure and program the TIM of all stm32f30x devices. These functions are split in 9 groups: (#) TIM TimeBase management: this group includes all needed functions to configure the TM Timebase unit: (++) Set/Get Prescaler (++) Set/Get Autoreload (++) Counter modes configuration (++) Set Clock division (++) Select the One Pulse mode (++) Update Request Configuration (++) Update Disable Configuration (++) Auto-Preload Configuration (++) Enable/Disable the counter (#) TIM Output Compare management: this group includes all needed functions to configure the Capture/Compare unit used in Output compare mode: (++) Configure each channel, independently, in Output Compare mode (++) Select the output compare modes (++) Select the Polarities of each channel (++) Set/Get the Capture/Compare register values (++) Select the Output Compare Fast mode (++) Select the Output Compare Forced mode (++) Output Compare-Preload Configuration (++) Clear Output Compare Reference (++) Select the OCREF Clear signal (++) Enable/Disable the Capture/Compare Channels (#) TIM Input Capture management: this group includes all needed functions to configure the Capture/Compare unit used in Input Capture mode: (++) Configure each channel in input capture mode (++) Configure Channel1/2 in PWM Input mode (++) Set the Input Capture Prescaler (++) Get the Capture/Compare values (#) Advanced-control timers (TIM1 and TIM8) specific features (++) Configures the Break input, dead time, Lock level, the OSSI, the OSSR State and the AOE(automatic output enable) (++) Enable/Disable the TIM peripheral Main Outputs (++) Select the Commutation event (++) Set/Reset the Capture Compare Preload Control bit (#) TIM interrupts, DMA and flags management (++) Enable/Disable interrupt sources (++) Get flags status (++) Clear flags/ Pending bits (++) Enable/Disable DMA requests (++) Configure DMA burst mode (++) Select CaptureCompare DMA request (#) TIM clocks management: this group includes all needed functions to configure the clock controller unit: (++) Select internal/External clock (++) Select the external clock mode: ETR(Mode1/Mode2), TIx or ITRx (#) TIM synchronization management: this group includes all needed functions to configure the Synchronization unit: (++) Select Input Trigger (++) Select Output Trigger (++) Select Master Slave Mode (++) ETR Configuration when used as external trigger (#) TIM specific interface management, this group includes all needed functions to use the specific TIM interface: (++) Encoder Interface Configuration (++) Select Hall Sensor (#) TIM specific remapping management includes the Remapping configuration of specific timers @endverbatim ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2014 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f30x_tim.h" #include "stm32f30x_rcc.h" /** @addtogroup STM32F30x_StdPeriph_Driver * @{ */ /** @defgroup TIM * @brief TIM driver modules * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* ---------------------- TIM registers bit mask ------------------------ */ #define SMCR_ETR_MASK ((uint16_t)0x00FF) #define CCMR_OFFSET ((uint16_t)0x0018) #define CCER_CCE_SET ((uint16_t)0x0001) #define CCER_CCNE_SET ((uint16_t)0x0004) #define CCMR_OC13M_MASK ((uint32_t)0xFFFEFF8F) #define CCMR_OC24M_MASK ((uint32_t)0xFEFF8FFF) /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter); static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter); static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter); static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter); /* Private functions ---------------------------------------------------------*/ /** @defgroup TIM_Private_Functions * @{ */ /** @defgroup TIM_Group1 TimeBase management functions * @brief TimeBase management functions * @verbatim =============================================================================== ##### TimeBase management functions ##### =============================================================================== *** TIM Driver: how to use it in Timing(Time base) Mode *** ============================================================ [..] To use the Timer in Timing(Time base) mode, the following steps are mandatory: (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function (#) Fill the TIM_TimeBaseInitStruct with the desired parameters. (#) Call TIM_TimeBaseInit(TIMx, &TIM_TimeBaseInitStruct) to configure the Time Base unit with the corresponding configuration (#) Enable the NVIC if you need to generate the update interrupt. (#) Enable the corresponding interrupt using the function TIM_ITConfig(TIMx, TIM_IT_Update) (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter. [..] (@) All other functions can be used separately to modify, if needed, a specific feature of the Timer. @endverbatim * @{ */ /** * @brief Deinitializes the TIMx peripheral registers to their default reset values. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @retval None */ void TIM_DeInit(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); if (TIMx == TIM1) { RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE); RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE); } else if (TIMx == TIM2) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE); } else if (TIMx == TIM3) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE); } else if (TIMx == TIM4) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE); } else if (TIMx == TIM6) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE); } else if (TIMx == TIM7) { RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE); RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE); } else if (TIMx == TIM8) { RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE); RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE); } else if (TIMx == TIM15) { RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, ENABLE); RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, DISABLE); } else if (TIMx == TIM16) { RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, ENABLE); RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, DISABLE); } else { if (TIMx == TIM17) { RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, ENABLE); RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, DISABLE); } } } /** * @brief Initializes the TIMx Time Base Unit peripheral according to * the specified parameters in the TIM_TimeBaseInitStruct. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef structure * that contains the configuration information for the specified TIM peripheral. * @retval None */ void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct) { uint16_t tmpcr1 = 0; /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode)); assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision)); tmpcr1 = TIMx->CR1; if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)|| (TIMx == TIM4)) { /* Select the Counter Mode */ tmpcr1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS)); tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode; } if((TIMx != TIM6) && (TIMx != TIM7)) { /* Set the clock division */ tmpcr1 &= (uint16_t)(~TIM_CR1_CKD); tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision; } TIMx->CR1 = tmpcr1; /* Set the Autoreload value */ TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ; /* Set the Prescaler value */ TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler; if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15) || (TIMx == TIM16) || (TIMx == TIM17)) { /* Set the Repetition Counter value */ TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter; } /* Generate an update event to reload the Prescaler and the repetition counter(only for TIM1 and TIM8) value immediatly */ TIMx->EGR = TIM_PSCReloadMode_Immediate; } /** * @brief Fills each TIM_TimeBaseInitStruct member with its default value. * @param TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef * structure which will be initialized. * @retval None */ void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct) { /* Set the default configuration */ TIM_TimeBaseInitStruct->TIM_Period = 0xFFFFFFFF; TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000; TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000; } /** * @brief Configures the TIMx Prescaler. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param Prescaler: specifies the Prescaler Register value * @param TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode * This parameter can be one of the following values: * @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event. * @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediatly. * @retval None */ void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode)); /* Set the Prescaler value */ TIMx->PSC = Prescaler; /* Set or reset the UG Bit */ TIMx->EGR = TIM_PSCReloadMode; } /** * @brief Specifies the TIMx Counter Mode to be used. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_CounterMode: specifies the Counter Mode to be used * This parameter can be one of the following values: * @arg TIM_CounterMode_Up: TIM Up Counting Mode * @arg TIM_CounterMode_Down: TIM Down Counting Mode * @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1 * @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2 * @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3 * @retval None */ void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode) { uint16_t tmpcr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode)); tmpcr1 = TIMx->CR1; /* Reset the CMS and DIR Bits */ tmpcr1 &= (uint16_t)~(TIM_CR1_DIR | TIM_CR1_CMS); /* Set the Counter Mode */ tmpcr1 |= TIM_CounterMode; /* Write to TIMx CR1 register */ TIMx->CR1 = tmpcr1; } /** * @brief Sets the TIMx Counter Register value * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param Counter: specifies the Counter register new value. * @retval None */ void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); /* Set the Counter Register value */ TIMx->CNT = Counter; } /** * @brief Sets the TIMx Autoreload Register value * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param Autoreload: specifies the Autoreload register new value. * @retval None */ void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); /* Set the Autoreload Register value */ TIMx->ARR = Autoreload; } /** * @brief Gets the TIMx Counter value. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @retval Counter Register value */ uint32_t TIM_GetCounter(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); /* Get the Counter Register value */ return TIMx->CNT; } /** * @brief Gets the TIMx Prescaler value. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @retval Prescaler Register value. */ uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); /* Get the Prescaler Register value */ return TIMx->PSC; } /** * @brief Enables or Disables the TIMx Update event. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param NewState: new state of the TIMx UDIS bit * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the Update Disable Bit */ TIMx->CR1 |= TIM_CR1_UDIS; } else { /* Reset the Update Disable Bit */ TIMx->CR1 &= (uint16_t)~TIM_CR1_UDIS; } } /** * @brief Configures the TIMx Update Request Interrupt source. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_UpdateSource: specifies the Update source. * This parameter can be one of the following values: * @arg TIM_UpdateSource_Regular: Source of update is the counter * overflow/underflow or the setting of UG bit, or an update * generation through the slave mode controller. * @arg TIM_UpdateSource_Global: Source of update is counter overflow/underflow. * @retval None */ void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource)); if (TIM_UpdateSource != TIM_UpdateSource_Global) { /* Set the URS Bit */ TIMx->CR1 |= TIM_CR1_URS; } else { /* Reset the URS Bit */ TIMx->CR1 &= (uint16_t)~TIM_CR1_URS; } } /** * @brief Sets or resets the update interrupt flag (UIF)status bit Remapping. * when sets, reading TIMx_CNT register returns UIF bit instead of CNT[31] * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param NewState: new state of the UIFREMAP bit. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_UIFRemap(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the TIM Counter */ TIMx->CR1 |= TIM_CR1_UIFREMAP; } else { /* Disable the TIM Counter */ TIMx->CR1 &= (uint16_t)~TIM_CR1_UIFREMAP; } } /** * @brief Enables or disables TIMx peripheral Preload register on ARR. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param NewState: new state of the TIMx peripheral Preload register * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the ARR Preload Bit */ TIMx->CR1 |= TIM_CR1_ARPE; } else { /* Reset the ARR Preload Bit */ TIMx->CR1 &= (uint16_t)~TIM_CR1_ARPE; } } /** * @brief Selects the TIMx's One Pulse Mode. * @param TIMx: where x can be 1, 2, 3, 4, 6 ,7 ,8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OPMode: specifies the OPM Mode to be used. * This parameter can be one of the following values: * @arg TIM_OPMode_Single * @arg TIM_OPMode_Repetitive * @retval None */ void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_OPM_MODE(TIM_OPMode)); /* Reset the OPM Bit */ TIMx->CR1 &= (uint16_t)~TIM_CR1_OPM; /* Configure the OPM Mode */ TIMx->CR1 |= TIM_OPMode; } /** * @brief Sets the TIMx Clock Division value. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17, to select the TIM peripheral. * @param TIM_CKD: specifies the clock division value. * This parameter can be one of the following value: * @arg TIM_CKD_DIV1: TDTS = Tck_tim * @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim * @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim * @retval None */ void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_CKD_DIV(TIM_CKD)); /* Reset the CKD Bits */ TIMx->CR1 &= (uint16_t)(~TIM_CR1_CKD); /* Set the CKD value */ TIMx->CR1 |= TIM_CKD; } /** * @brief Enables or disables the specified TIM peripheral. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select * the TIMx peripheral. * @param NewState: new state of the TIMx peripheral. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the TIM Counter */ TIMx->CR1 |= TIM_CR1_CEN; } else { /* Disable the TIM Counter */ TIMx->CR1 &= (uint16_t)~TIM_CR1_CEN; } } /** * @} */ /** @defgroup TIM_Group2 Output Compare management functions * @brief Output Compare management functions * @verbatim =============================================================================== ##### Output Compare management functions ##### =============================================================================== *** TIM Driver: how to use it in Output Compare Mode *** ======================================================== [..] To use the Timer in Output Compare mode, the following steps are mandatory: (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function (#) Configure the TIM pins by configuring the corresponding GPIO pins (#) Configure the Time base unit as described in the first part of this driver, if needed, else the Timer will run with the default configuration: (++) Autoreload value = 0xFFFF (++) Prescaler value = 0x0000 (++) Counter mode = Up counting (++) Clock Division = TIM_CKD_DIV1 (#) Fill the TIM_OCInitStruct with the desired parameters including: (++) The TIM Output Compare mode: TIM_OCMode (++) TIM Output State: TIM_OutputState (++) TIM Pulse value: TIM_Pulse (++) TIM Output Compare Polarity : TIM_OCPolarity (#) Call TIM_OCxInit(TIMx, &TIM_OCInitStruct) to configure the desired channel with the corresponding configuration (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter. [..] (@) All other functions can be used separately to modify, if needed, a specific feature of the Timer. (@) In case of PWM mode, this function is mandatory: TIM_OCxPreloadConfig(TIMx, TIM_OCPreload_ENABLE); (@) If the corresponding interrupt or DMA request are needed, the user should: (#@) Enable the NVIC (or the DMA) to use the TIM interrupts (or DMA requests). (#@) Enable the corresponding interrupt (or DMA request) using the function TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)) @endverbatim * @{ */ /** * @brief Initializes the TIMx Channel1 according to the specified parameters in * the TIM_OCInitStruct. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17, to select the TIM peripheral. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) { uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode)); assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState)); assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity)); /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR1 register value */ tmpccmrx = TIMx->CCMR1; /* Reset the Output Compare Mode Bits */ tmpccmrx &= (uint32_t)~TIM_CCMR1_OC1M; tmpccmrx &= (uint32_t)~TIM_CCMR1_CC1S; /* Select the Output Compare Mode */ tmpccmrx |= TIM_OCInitStruct->TIM_OCMode; /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC1P; /* Set the Output Compare Polarity */ tmpccer |= TIM_OCInitStruct->TIM_OCPolarity; /* Set the Output State */ tmpccer |= TIM_OCInitStruct->TIM_OutputState; if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM15) || (TIMx == TIM16) || (TIMx == TIM17)) { assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState)); assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity)); assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState)); assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState)); /* Reset the Output N Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC1NP; /* Set the Output N Polarity */ tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity; /* Reset the Output N State */ tmpccer &= (uint32_t)~TIM_CCER_CC1NE; /* Set the Output N State */ tmpccer |= TIM_OCInitStruct->TIM_OutputNState; /* Reset the Output Compare and Output Compare N IDLE State */ tmpcr2 &= (uint32_t)~TIM_CR2_OIS1; tmpcr2 &= (uint32_t)~TIM_CR2_OIS1N; /* Set the Output Idle state */ tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState; /* Set the Output N Idle state */ tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState; } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Initializes the TIMx Channel2 according to the specified parameters * in the TIM_OCInitStruct. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM peripheral. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) { uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode)); assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState)); assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity)); /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR1 register value */ tmpccmrx = TIMx->CCMR1; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= (uint32_t)~TIM_CCMR1_OC2M; tmpccmrx &= (uint32_t)~TIM_CCMR1_CC2S; /* Select the Output Compare Mode */ tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode << 8); /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC2P; /* Set the Output Compare Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 4); /* Set the Output State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 4); if((TIMx == TIM1) || (TIMx == TIM8)) { assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState)); assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity)); assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState)); assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState)); /* Reset the Output N Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC2NP; /* Set the Output N Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNPolarity << 4); /* Reset the Output N State */ tmpccer &= (uint32_t)~TIM_CCER_CC2NE; /* Set the Output N State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputNState << 4); /* Reset the Output Compare and Output Compare N IDLE State */ tmpcr2 &= (uint32_t)~TIM_CR2_OIS2; tmpcr2 &= (uint32_t)~TIM_CR2_OIS2N; /* Set the Output Idle state */ tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 2); /* Set the Output N Idle state */ tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNIdleState << 2); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Initializes the TIMx Channel3 according to the specified parameters * in the TIM_OCInitStruct. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) { uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode)); assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState)); assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity)); /* Disable the Channel 3: Reset the CC2E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR2 register value */ tmpccmrx = TIMx->CCMR2; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= (uint32_t)~TIM_CCMR2_OC3M; tmpccmrx &= (uint32_t)~TIM_CCMR2_CC3S; /* Select the Output Compare Mode */ tmpccmrx |= TIM_OCInitStruct->TIM_OCMode; /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC3P; /* Set the Output Compare Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 8); /* Set the Output State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 8); if((TIMx == TIM1) || (TIMx == TIM8)) { assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState)); assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity)); assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState)); assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState)); /* Reset the Output N Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC3NP; /* Set the Output N Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNPolarity << 8); /* Reset the Output N State */ tmpccer &= (uint32_t)~TIM_CCER_CC3NE; /* Set the Output N State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputNState << 8); /* Reset the Output Compare and Output Compare N IDLE State */ tmpcr2 &= (uint32_t)~TIM_CR2_OIS3; tmpcr2 &= (uint32_t)~TIM_CR2_OIS3N; /* Set the Output Idle state */ tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 4); /* Set the Output N Idle state */ tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCNIdleState << 4); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR2 */ TIMx->CCMR2 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Initializes the TIMx Channel4 according to the specified parameters * in the TIM_OCInitStruct. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) { uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode)); assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState)); assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity)); /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR2 register value */ tmpccmrx = TIMx->CCMR2; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= (uint32_t)~TIM_CCMR2_OC4M; tmpccmrx &= (uint32_t)~TIM_CCMR2_CC4S; /* Select the Output Compare Mode */ tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode << 8); /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC4P; /* Set the Output Compare Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 12); /* Set the Output State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 12); if((TIMx == TIM1) || (TIMx == TIM8)) { assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState)); /* Reset the Output Compare IDLE State */ tmpcr2 &=(uint32_t) ~TIM_CR2_OIS4; /* Set the Output Idle state */ tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 6); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR2 */ TIMx->CCMR2 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Initializes the TIMx Channel5 according to the specified parameters * in the TIM_OCInitStruct. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_OC5Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) { uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode)); assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState)); assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity)); /* Disable the Channel 5: Reset the CC5E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC5E; /* to be verified*/ /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR3 register value */ tmpccmrx = TIMx->CCMR3; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= (uint32_t)~TIM_CCMR3_OC5M; /* Select the Output Compare Mode */ tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode); /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC5P; /* Set the Output Compare Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 16); /* Set the Output State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 16); if((TIMx == TIM1) || (TIMx == TIM8)) { assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState)); /* Reset the Output Compare IDLE State */ tmpcr2 &=(uint32_t) ~TIM_CR2_OIS5; /* Set the Output Idle state */ tmpcr2 |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCIdleState << 16); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR2 */ TIMx->CCMR3 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR5 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Initializes the TIMx Channel6 according to the specified parameters * in the TIM_OCInitStruct. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_OC6Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct) { uint32_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode)); assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState)); assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity)); /* Disable the Channel 5: Reset the CC5E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC6E; /* to be verified*/ /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Get the TIMx CR2 register value */ tmpcr2 = TIMx->CR2; /* Get the TIMx CCMR3 register value */ tmpccmrx = TIMx->CCMR3; /* Reset the Output Compare mode and Capture/Compare selection Bits */ tmpccmrx &= (uint32_t)~TIM_CCMR3_OC6M; /* Select the Output Compare Mode */ tmpccmrx |= (uint32_t)(TIM_OCInitStruct->TIM_OCMode << 8); /* Reset the Output Polarity level */ tmpccer &= (uint32_t)~TIM_CCER_CC6P; /* Set the Output Compare Polarity */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OCPolarity << 20); /* Set the Output State */ tmpccer |= (uint32_t)((uint32_t)TIM_OCInitStruct->TIM_OutputState << 20); if((TIMx == TIM1) || (TIMx == TIM8)) { assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState)); /* Reset the Output Compare IDLE State */ tmpcr2 &=(uint32_t) ~TIM_CR2_OIS6; /* Set the Output Idle state */ tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 18); } /* Write to TIMx CR2 */ TIMx->CR2 = tmpcr2; /* Write to TIMx CCMR2 */ TIMx->CCMR3 = tmpccmrx; /* Set the Capture Compare Register value */ TIMx->CCR6 = TIM_OCInitStruct->TIM_Pulse; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Selects the TIM Group Channel 5 and Channel 1, OC1REFC is the logical AND of OC1REFC and OC5REF. * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral * @param NewState: new state of the Commutation event. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_SelectGC5C1(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the GC5C1 Bit */ TIMx->CCR5 |= TIM_CCR5_GC5C1; } else { /* Reset the GC5C1 Bit */ TIMx->CCR5 &= (uint32_t)~TIM_CCR5_GC5C1; } } /** * @brief Selects the TIM Group Channel 5 and Channel 2, OC2REFC is the logical AND of OC2REFC and OC5REF. * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral * @param NewState: new state of the Commutation event. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_SelectGC5C2(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the GC5C2 Bit */ TIMx->CCR5 |= TIM_CCR5_GC5C2; } else { /* Reset the GC5C2 Bit */ TIMx->CCR5 &= (uint32_t)~TIM_CCR5_GC5C2; } } /** * @brief Selects the TIM Group Channel 5 and Channel 3, OC3REFC is the logical AND of OC3REFC and OC5REF. * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral * @param NewState: new state of the Commutation event. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_SelectGC5C3(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the GC5C3 Bit */ TIMx->CCR5 |= TIM_CCR5_GC5C3; } else { /* Reset the GC5C3 Bit */ TIMx->CCR5 &= (uint32_t)~TIM_CCR5_GC5C3; } } /** * @brief Fills each TIM_OCInitStruct member with its default value. * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure which will * be initialized. * @retval None */ void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct) { /* Set the default configuration */ TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing; TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable; TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable; TIM_OCInitStruct->TIM_Pulse = 0x00000000; TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High; TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset; } /** * @brief Selects the TIM Output Compare Mode. * @note This function disables the selected channel before changing the Output * Compare Mode. If needed, user has to enable this channel using * TIM_CCxCmd() and TIM_CCxNCmd() functions. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_Channel: specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_Channel_1: TIM Channel 1 * @arg TIM_Channel_2: TIM Channel 2 * @arg TIM_Channel_3: TIM Channel 3 * @arg TIM_Channel_4: TIM Channel 4 * @param TIM_OCMode: specifies the TIM Output Compare Mode. * This parameter can be one of the following values: * @arg TIM_OCMode_Timing * @arg TIM_OCMode_Active * @arg TIM_OCMode_Toggle * @arg TIM_OCMode_PWM1 * @arg TIM_OCMode_PWM2 * @arg TIM_ForcedAction_Active * @arg TIM_ForcedAction_InActive * @arg TIM_OCMode_Retrigerrable_OPM1 * @arg TIM_OCMode_Retrigerrable_OPM2 * @arg TIM_OCMode_Combined_PWM1 * @arg TIM_OCMode_Combined_PWM2 * @arg TIM_OCMode_Asymmetric_PWM1 * @arg TIM_OCMode_Asymmetric_PWM2 * @retval None */ void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint32_t TIM_OCMode) { uint32_t tmp = 0; uint16_t tmp1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_CHANNEL(TIM_Channel)); assert_param(IS_TIM_OCM(TIM_OCMode)); tmp = (uint32_t) TIMx; tmp += CCMR_OFFSET; tmp1 = CCER_CCE_SET << (uint16_t)TIM_Channel; /* Disable the Channel: Reset the CCxE Bit */ TIMx->CCER &= (uint16_t) ~tmp1; if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3)) { tmp += (TIM_Channel>>1); /* Reset the OCxM bits in the CCMRx register */ *(__IO uint32_t *) tmp &= CCMR_OC13M_MASK; /* Configure the OCxM bits in the CCMRx register */ *(__IO uint32_t *) tmp |= TIM_OCMode; } else { tmp += (uint32_t)(TIM_Channel - (uint32_t)4)>> (uint32_t)1; /* Reset the OCxM bits in the CCMRx register */ *(__IO uint32_t *) tmp &= CCMR_OC24M_MASK; /* Configure the OCxM bits in the CCMRx register */ *(__IO uint32_t *) tmp |= (uint32_t)(TIM_OCMode << 8); } } /** * @brief Sets the TIMx Capture Compare1 Register value * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param Compare1: specifies the Capture Compare1 register new value. * @retval None */ void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); /* Set the Capture Compare1 Register value */ TIMx->CCR1 = Compare1; } /** * @brief Sets the TIMx Capture Compare2 Register value * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param Compare2: specifies the Capture Compare2 register new value. * @retval None */ void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); /* Set the Capture Compare2 Register value */ TIMx->CCR2 = Compare2; } /** * @brief Sets the TIMx Capture Compare3 Register value * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral. * @param Compare3: specifies the Capture Compare3 register new value. * @retval None */ void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); /* Set the Capture Compare3 Register value */ TIMx->CCR3 = Compare3; } /** * @brief Sets the TIMx Capture Compare4 Register value * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral. * @param Compare4: specifies the Capture Compare4 register new value. * @retval None */ void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); /* Set the Capture Compare4 Register value */ TIMx->CCR4 = Compare4; } /** * @brief Sets the TIMx Capture Compare5 Register value * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param Compare5: specifies the Capture Compare5 register new value. * @retval None */ void TIM_SetCompare5(TIM_TypeDef* TIMx, uint32_t Compare5) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); /* Set the Capture Compare5 Register value */ TIMx->CCR5 = Compare5; } /** * @brief Sets the TIMx Capture Compare6 Register value * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param Compare6: specifies the Capture Compare5 register new value. * @retval None */ void TIM_SetCompare6(TIM_TypeDef* TIMx, uint32_t Compare6) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); /* Set the Capture Compare6 Register value */ TIMx->CCR6 = Compare6; } /** * @brief Forces the TIMx output 1 waveform to active or inactive level. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform. * This parameter can be one of the following values: * @arg TIM_ForcedAction_Active: Force active level on OC1REF * @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF. * @retval None */ void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction)); tmpccmr1 = TIMx->CCMR1; /* Reset the OC1M Bits */ tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC1M; /* Configure The Forced output Mode */ tmpccmr1 |= TIM_ForcedAction; /* Write to TIMx CCMR1 register */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Forces the TIMx output 2 waveform to active or inactive level. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform. * This parameter can be one of the following values: * @arg TIM_ForcedAction_Active: Force active level on OC2REF * @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF. * @retval None */ void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction)); tmpccmr1 = TIMx->CCMR1; /* Reset the OC2M Bits */ tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC2M; /* Configure The Forced output Mode */ tmpccmr1 |= ((uint32_t)TIM_ForcedAction << 8); /* Write to TIMx CCMR1 register */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Forces the TIMx output 3 waveform to active or inactive level. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform. * This parameter can be one of the following values: * @arg TIM_ForcedAction_Active: Force active level on OC3REF * @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF. * @retval None */ void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction)); tmpccmr2 = TIMx->CCMR2; /* Reset the OC1M Bits */ tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC3M; /* Configure The Forced output Mode */ tmpccmr2 |= TIM_ForcedAction; /* Write to TIMx CCMR2 register */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Forces the TIMx output 4 waveform to active or inactive level. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform. * This parameter can be one of the following values: * @arg TIM_ForcedAction_Active: Force active level on OC4REF * @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF. * @retval None */ void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction)); tmpccmr2 = TIMx->CCMR2; /* Reset the OC2M Bits */ tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC4M; /* Configure The Forced output Mode */ tmpccmr2 |= ((uint32_t)TIM_ForcedAction << 8); /* Write to TIMx CCMR2 register */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Forces the TIMx output 5 waveform to active or inactive level. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform. * This parameter can be one of the following values: * @arg TIM_ForcedAction_Active: Force active level on OC5REF * @arg TIM_ForcedAction_InActive: Force inactive level on OC5REF. * @retval None */ void TIM_ForcedOC5Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction) { uint32_t tmpccmr3 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction)); tmpccmr3 = TIMx->CCMR3; /* Reset the OC5M Bits */ tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC5M; /* Configure The Forced output Mode */ tmpccmr3 |= (uint32_t)(TIM_ForcedAction); /* Write to TIMx CCMR3 register */ TIMx->CCMR3 = tmpccmr3; } /** * @brief Forces the TIMx output 6 waveform to active or inactive level. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform. * This parameter can be one of the following values: * @arg TIM_ForcedAction_Active: Force active level on OC5REF * @arg TIM_ForcedAction_InActive: Force inactive level on OC5REF. * @retval None */ void TIM_ForcedOC6Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction) { uint32_t tmpccmr3 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction)); tmpccmr3 = TIMx->CCMR3; /* Reset the OC6M Bits */ tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC6M; /* Configure The Forced output Mode */ tmpccmr3 |= ((uint32_t)TIM_ForcedAction << 8); /* Write to TIMx CCMR3 register */ TIMx->CCMR3 = tmpccmr3; } /** * @brief Enables or disables the TIMx peripheral Preload register on CCR1. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OCPreload: new state of the TIMx peripheral Preload register * This parameter can be one of the following values: * @arg TIM_OCPreload_Enable * @arg TIM_OCPreload_Disable * @retval None */ void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload)); tmpccmr1 = TIMx->CCMR1; /* Reset the OC1PE Bit */ tmpccmr1 &= (uint32_t)(~TIM_CCMR1_OC1PE); /* Enable or Disable the Output Compare Preload feature */ tmpccmr1 |= TIM_OCPreload; /* Write to TIMx CCMR1 register */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Enables or disables the TIMx peripheral Preload register on CCR2. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_OCPreload: new state of the TIMx peripheral Preload register * This parameter can be one of the following values: * @arg TIM_OCPreload_Enable * @arg TIM_OCPreload_Disable * @retval None */ void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload)); tmpccmr1 = TIMx->CCMR1; /* Reset the OC2PE Bit */ tmpccmr1 &= (uint32_t)(~TIM_CCMR1_OC2PE); /* Enable or Disable the Output Compare Preload feature */ tmpccmr1 |= ((uint32_t)TIM_OCPreload << 8); /* Write to TIMx CCMR1 register */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Enables or disables the TIMx peripheral Preload register on CCR3. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCPreload: new state of the TIMx peripheral Preload register * This parameter can be one of the following values: * @arg TIM_OCPreload_Enable * @arg TIM_OCPreload_Disable * @retval None */ void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload)); tmpccmr2 = TIMx->CCMR2; /* Reset the OC3PE Bit */ tmpccmr2 &= (uint32_t)(~TIM_CCMR2_OC3PE); /* Enable or Disable the Output Compare Preload feature */ tmpccmr2 |= TIM_OCPreload; /* Write to TIMx CCMR2 register */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Enables or disables the TIMx peripheral Preload register on CCR4. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCPreload: new state of the TIMx peripheral Preload register * This parameter can be one of the following values: * @arg TIM_OCPreload_Enable * @arg TIM_OCPreload_Disable * @retval None */ void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload)); tmpccmr2 = TIMx->CCMR2; /* Reset the OC4PE Bit */ tmpccmr2 &= (uint32_t)(~TIM_CCMR2_OC4PE); /* Enable or Disable the Output Compare Preload feature */ tmpccmr2 |= ((uint32_t)TIM_OCPreload << 8); /* Write to TIMx CCMR2 register */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Enables or disables the TIMx peripheral Preload register on CCR5. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCPreload: new state of the TIMx peripheral Preload register * This parameter can be one of the following values: * @arg TIM_OCPreload_Enable * @arg TIM_OCPreload_Disable * @retval None */ void TIM_OC5PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload) { uint32_t tmpccmr3 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload)); tmpccmr3 = TIMx->CCMR3; /* Reset the OC5PE Bit */ tmpccmr3 &= (uint32_t)(~TIM_CCMR3_OC5PE); /* Enable or Disable the Output Compare Preload feature */ tmpccmr3 |= (uint32_t)(TIM_OCPreload); /* Write to TIMx CCMR3 register */ TIMx->CCMR3 = tmpccmr3; } /** * @brief Enables or disables the TIMx peripheral Preload register on CCR6. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCPreload: new state of the TIMx peripheral Preload register * This parameter can be one of the following values: * @arg TIM_OCPreload_Enable * @arg TIM_OCPreload_Disable * @retval None */ void TIM_OC6PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload) { uint32_t tmpccmr3 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload)); tmpccmr3 = TIMx->CCMR3; /* Reset the OC5PE Bit */ tmpccmr3 &= (uint32_t)(~TIM_CCMR3_OC6PE); /* Enable or Disable the Output Compare Preload feature */ tmpccmr3 |= ((uint32_t)TIM_OCPreload << 8); /* Write to TIMx CCMR3 register */ TIMx->CCMR3 = tmpccmr3; } /** * @brief Configures the TIMx Output Compare 1 Fast feature. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCFast_Enable: TIM output compare fast enable * @arg TIM_OCFast_Disable: TIM output compare fast disable * @retval None */ void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast)); /* Get the TIMx CCMR1 register value */ tmpccmr1 = TIMx->CCMR1; /* Reset the OC1FE Bit */ tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC1FE; /* Enable or Disable the Output Compare Fast Bit */ tmpccmr1 |= TIM_OCFast; /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Configures the TIMx Output Compare 2 Fast feature. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCFast_Enable: TIM output compare fast enable * @arg TIM_OCFast_Disable: TIM output compare fast disable * @retval None */ void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast)); /* Get the TIMx CCMR1 register value */ tmpccmr1 = TIMx->CCMR1; /* Reset the OC2FE Bit */ tmpccmr1 &= (uint32_t)(~TIM_CCMR1_OC2FE); /* Enable or Disable the Output Compare Fast Bit */ tmpccmr1 |= ((uint32_t)TIM_OCFast << 8); /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Configures the TIMx Output Compare 3 Fast feature. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCFast_Enable: TIM output compare fast enable * @arg TIM_OCFast_Disable: TIM output compare fast disable * @retval None */ void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast)); /* Get the TIMx CCMR2 register value */ tmpccmr2 = TIMx->CCMR2; /* Reset the OC3FE Bit */ tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC3FE; /* Enable or Disable the Output Compare Fast Bit */ tmpccmr2 |= TIM_OCFast; /* Write to TIMx CCMR2 */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Configures the TIMx Output Compare 4 Fast feature. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCFast_Enable: TIM output compare fast enable * @arg TIM_OCFast_Disable: TIM output compare fast disable * @retval None */ void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast)); /* Get the TIMx CCMR2 register value */ tmpccmr2 = TIMx->CCMR2; /* Reset the OC4FE Bit */ tmpccmr2 &= (uint32_t)(~TIM_CCMR2_OC4FE); /* Enable or Disable the Output Compare Fast Bit */ tmpccmr2 |= ((uint32_t)TIM_OCFast << 8); /* Write to TIMx CCMR2 */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Clears or safeguards the OCREF1 signal on an external event * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCClear_Enable: TIM Output clear enable * @arg TIM_OCClear_Disable: TIM Output clear disable * @retval None */ void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear)); tmpccmr1 = TIMx->CCMR1; /* Reset the OC1CE Bit */ tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC1CE; /* Enable or Disable the Output Compare Clear Bit */ tmpccmr1 |= TIM_OCClear; /* Write to TIMx CCMR1 register */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Clears or safeguards the OCREF2 signal on an external event * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCClear_Enable: TIM Output clear enable * @arg TIM_OCClear_Disable: TIM Output clear disable * @retval None */ void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear) { uint32_t tmpccmr1 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear)); tmpccmr1 = TIMx->CCMR1; /* Reset the OC2CE Bit */ tmpccmr1 &= (uint32_t)~TIM_CCMR1_OC2CE; /* Enable or Disable the Output Compare Clear Bit */ tmpccmr1 |= ((uint32_t)TIM_OCClear << 8); /* Write to TIMx CCMR1 register */ TIMx->CCMR1 = tmpccmr1; } /** * @brief Clears or safeguards the OCREF3 signal on an external event * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCClear_Enable: TIM Output clear enable * @arg TIM_OCClear_Disable: TIM Output clear disable * @retval None */ void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear)); tmpccmr2 = TIMx->CCMR2; /* Reset the OC3CE Bit */ tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC3CE; /* Enable or Disable the Output Compare Clear Bit */ tmpccmr2 |= TIM_OCClear; /* Write to TIMx CCMR2 register */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Clears or safeguards the OCREF4 signal on an external event * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCClear_Enable: TIM Output clear enable * @arg TIM_OCClear_Disable: TIM Output clear disable * @retval None */ void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear) { uint32_t tmpccmr2 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear)); tmpccmr2 = TIMx->CCMR2; /* Reset the OC4CE Bit */ tmpccmr2 &= (uint32_t)~TIM_CCMR2_OC4CE; /* Enable or Disable the Output Compare Clear Bit */ tmpccmr2 |= ((uint32_t)TIM_OCClear << 8); /* Write to TIMx CCMR2 register */ TIMx->CCMR2 = tmpccmr2; } /** * @brief Clears or safeguards the OCREF5 signal on an external event * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCClear_Enable: TIM Output clear enable * @arg TIM_OCClear_Disable: TIM Output clear disable * @retval None */ void TIM_ClearOC5Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear) { uint32_t tmpccmr3 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear)); tmpccmr3 = TIMx->CCMR3; /* Reset the OC5CE Bit */ tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC5CE; /* Enable or Disable the Output Compare Clear Bit */ tmpccmr3 |= (uint32_t)(TIM_OCClear); /* Write to TIMx CCMR3 register */ TIMx->CCMR3 = tmpccmr3; } /** * @brief Clears or safeguards the OCREF6 signal on an external event * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit. * This parameter can be one of the following values: * @arg TIM_OCClear_Enable: TIM Output clear enable * @arg TIM_OCClear_Disable: TIM Output clear disable * @retval None */ void TIM_ClearOC6Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear) { uint32_t tmpccmr3 = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear)); tmpccmr3 = TIMx->CCMR3; /* Reset the OC5CE Bit */ tmpccmr3 &= (uint32_t)~TIM_CCMR3_OC6CE; /* Enable or Disable the Output Compare Clear Bit */ tmpccmr3 |= ((uint32_t)TIM_OCClear << 8); /* Write to TIMx CCMR3 register */ TIMx->CCMR3 = tmpccmr3; } /** * @brief Selects the OCReference Clear source. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OCReferenceClear: specifies the OCReference Clear source. * This parameter can be one of the following values: * @arg TIM_OCReferenceClear_ETRF: The internal OCreference clear input is connected to ETRF. * @arg TIM_OCReferenceClear_OCREFCLR: The internal OCreference clear input is connected to OCREF_CLR input. * @retval None */ void TIM_SelectOCREFClear(TIM_TypeDef* TIMx, uint16_t TIM_OCReferenceClear) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(TIM_OCREFERENCECECLEAR_SOURCE(TIM_OCReferenceClear)); /* Set the TIM_OCReferenceClear source */ TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_OCCS); TIMx->SMCR |= TIM_OCReferenceClear; } /** * @brief Configures the TIMx channel 1 polarity. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OCPolarity: specifies the OC1 Polarity * This parameter can be one of the following values: * @arg TIM_OCPolarity_High: Output Compare active high * @arg TIM_OCPolarity_Low: Output Compare active low * @retval None */ void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC1P Bit */ tmpccer &= (uint32_t)(~TIM_CCER_CC1P); tmpccer |= TIM_OCPolarity; /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx Channel 1N polarity. * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_OCNPolarity: specifies the OC1N Polarity * This parameter can be one of the following values: * @arg TIM_OCNPolarity_High: Output Compare active high * @arg TIM_OCNPolarity_Low: Output Compare active low * @retval None */ void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC1NP Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC1NP; tmpccer |= TIM_OCNPolarity; /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx channel 2 polarity. * @param TIMx: where x can be 1, 2, 3, 4 8 or 15 to select the TIM * peripheral. * @param TIM_OCPolarity: specifies the OC2 Polarity * This parameter can be one of the following values: * @arg TIM_OCPolarity_High: Output Compare active high * @arg TIM_OCPolarity_Low: Output Compare active low * @retval None */ void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC2P Bit */ tmpccer &= (uint32_t)(~TIM_CCER_CC2P); tmpccer |= ((uint32_t)TIM_OCPolarity << 4); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx Channel 2N polarity. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCNPolarity: specifies the OC2N Polarity * This parameter can be one of the following values: * @arg TIM_OCNPolarity_High: Output Compare active high * @arg TIM_OCNPolarity_Low: Output Compare active low * @retval None */ void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC2NP Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC2NP; tmpccer |= ((uint32_t)TIM_OCNPolarity << 4); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx channel 3 polarity. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCPolarity: specifies the OC3 Polarity * This parameter can be one of the following values: * @arg TIM_OCPolarity_High: Output Compare active high * @arg TIM_OCPolarity_Low: Output Compare active low * @retval None */ void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC3P Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC3P; tmpccer |= ((uint32_t)TIM_OCPolarity << 8); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx Channel 3N polarity. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCNPolarity: specifies the OC3N Polarity * This parameter can be one of the following values: * @arg TIM_OCNPolarity_High: Output Compare active high * @arg TIM_OCNPolarity_Low: Output Compare active low * @retval None */ void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC3NP Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC3NP; tmpccer |= ((uint32_t)TIM_OCNPolarity << 8); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx channel 4 polarity. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_OCPolarity: specifies the OC4 Polarity * This parameter can be one of the following values: * @arg TIM_OCPolarity_High: Output Compare active high * @arg TIM_OCPolarity_Low: Output Compare active low * @retval None */ void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC4P Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC4P; tmpccer |= ((uint32_t)TIM_OCPolarity << 12); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx channel 5 polarity. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCPolarity: specifies the OC5 Polarity * This parameter can be one of the following values: * @arg TIM_OCPolarity_High: Output Compare active high * @arg TIM_OCPolarity_Low: Output Compare active low * @retval None */ void TIM_OC5PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC5P Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC5P; tmpccer |= ((uint32_t)TIM_OCPolarity << 16); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Configures the TIMx channel 6 polarity. * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * @param TIM_OCPolarity: specifies the OC6 Polarity * This parameter can be one of the following values: * @arg TIM_OCPolarity_High: Output Compare active high * @arg TIM_OCPolarity_Low: Output Compare active low * @retval None */ void TIM_OC6PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity) { uint32_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity)); tmpccer = TIMx->CCER; /* Set or Reset the CC6P Bit */ tmpccer &= (uint32_t)~TIM_CCER_CC6P; tmpccer |= ((uint32_t)TIM_OCPolarity << 20); /* Write to TIMx CCER register */ TIMx->CCER = tmpccer; } /** * @brief Enables or disables the TIM Capture Compare Channel x. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_Channel: specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_Channel_1: TIM Channel 1 * @arg TIM_Channel_2: TIM Channel 2 * @arg TIM_Channel_3: TIM Channel 3 * @arg TIM_Channel_4: TIM Channel 4 * @arg TIM_Channel_5: TIM Channel 5 * @arg TIM_Channel_6: TIM Channel 6 * @param TIM_CCx: specifies the TIM Channel CCxE bit new state. * This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable. * @retval None */ void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx) { uint32_t tmp = 0; /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_CHANNEL(TIM_Channel)); assert_param(IS_TIM_CCX(TIM_CCx)); tmp = (uint32_t)CCER_CCE_SET << (uint32_t)TIM_Channel; /* Reset the CCxE Bit */ TIMx->CCER &= (uint32_t)(~tmp); /* Set or reset the CCxE Bit */ TIMx->CCER |= ((uint32_t)TIM_CCx << (uint32_t)TIM_Channel); } /** * @brief Enables or disables the TIM Capture Compare Channel xN. * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_Channel: specifies the TIM Channel * This parameter can be one of the following values: * @arg TIM_Channel_1: TIM Channel 1 * @arg TIM_Channel_2: TIM Channel 2 * @arg TIM_Channel_3: TIM Channel 3 * @param TIM_CCxN: specifies the TIM Channel CCxNE bit new state. * This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable. * @retval None */ void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN) { uint32_t tmp = 0; /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel)); assert_param(IS_TIM_CCXN(TIM_CCxN)); tmp = (uint32_t)CCER_CCNE_SET << (uint32_t)TIM_Channel; /* Reset the CCxNE Bit */ TIMx->CCER &= (uint32_t) ~tmp; /* Set or reset the CCxNE Bit */ TIMx->CCER |= ((uint32_t)TIM_CCxN << (uint32_t)TIM_Channel); } /** * @} */ /** @defgroup TIM_Group3 Input Capture management functions * @brief Input Capture management functions * @verbatim =============================================================================== ##### Input Capture management functions ##### =============================================================================== *** TIM Driver: how to use it in Input Capture Mode *** ======================================================= [..] To use the Timer in Input Capture mode, the following steps are mandatory: (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function (#) Configure the TIM pins by configuring the corresponding GPIO pins (#) Configure the Time base unit as described in the first part of this driver, if needed, else the Timer will run with the default configuration: (++) Autoreload value = 0xFFFF (++) Prescaler value = 0x0000 (++) Counter mode = Up counting (++) Clock Division = TIM_CKD_DIV1 (#) Fill the TIM_ICInitStruct with the desired parameters including: (++) TIM Channel: TIM_Channel (++) TIM Input Capture polarity: TIM_ICPolarity (++) TIM Input Capture selection: TIM_ICSelection (++) TIM Input Capture Prescaler: TIM_ICPrescaler (++) TIM Input CApture filter value: TIM_ICFilter (#) Call TIM_ICInit(TIMx, &TIM_ICInitStruct) to configure the desired channel with the corresponding configuration and to measure only frequency or duty cycle of the input signal, or, Call TIM_PWMIConfig(TIMx, &TIM_ICInitStruct) to configure the desired channels with the corresponding configuration and to measure the frequency and the duty cycle of the input signal (#) Enable the NVIC or the DMA to read the measured frequency. (#) Enable the corresponding interrupt (or DMA request) to read the Captured value, using the function TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)) (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter. (#) Use TIM_GetCapturex(TIMx); to read the captured value. [..] (@) All other functions can be used separately to modify, if needed, a specific feature of the Timer. @endverbatim * @{ */ /** * @brief Initializes the TIM peripheral according to the specified parameters * in the TIM_ICInitStruct. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity)); assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection)); assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler)); assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter)); if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1) { /* TI1 Configuration */ TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); } else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2) { /* TI2 Configuration */ TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); } else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3) { /* TI3 Configuration */ TI3_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); } else { /* TI4 Configuration */ TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); } } /** * @brief Fills each TIM_ICInitStruct member with its default value. * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will * be initialized. * @retval None */ void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct) { /* Set the default configuration */ TIM_ICInitStruct->TIM_Channel = TIM_Channel_1; TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising; TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI; TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1; TIM_ICInitStruct->TIM_ICFilter = 0x00; } /** * @brief Configures the TIM peripheral according to the specified parameters * in the TIM_ICInitStruct to measure an external PWM signal. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains * the configuration information for the specified TIM peripheral. * @retval None */ void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct) { uint16_t icoppositepolarity = TIM_ICPolarity_Rising; uint16_t icoppositeselection = TIM_ICSelection_DirectTI; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); /* Select the Opposite Input Polarity */ if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising) { icoppositepolarity = TIM_ICPolarity_Falling; } else { icoppositepolarity = TIM_ICPolarity_Rising; } /* Select the Opposite Input */ if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI) { icoppositeselection = TIM_ICSelection_IndirectTI; } else { icoppositeselection = TIM_ICSelection_DirectTI; } if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1) { /* TI1 Configuration */ TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); /* TI2 Configuration */ TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); } else { /* TI2 Configuration */ TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); /* TI1 Configuration */ TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter); /* Set the Input Capture Prescaler value */ TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler); } } /** * @brief Gets the TIMx Input Capture 1 value. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @retval Capture Compare 1 Register value. */ uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); /* Get the Capture 1 Register value */ return TIMx->CCR1; } /** * @brief Gets the TIMx Input Capture 2 value. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @retval Capture Compare 2 Register value. */ uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); /* Get the Capture 2 Register value */ return TIMx->CCR2; } /** * @brief Gets the TIMx Input Capture 3 value. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @retval Capture Compare 3 Register value. */ uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); /* Get the Capture 3 Register value */ return TIMx->CCR3; } /** * @brief Gets the TIMx Input Capture 4 value. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @retval Capture Compare 4 Register value. */ uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); /* Get the Capture 4 Register value */ return TIMx->CCR4; } /** * @brief Sets the TIMx Input Capture 1 prescaler. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_ICPSC: specifies the Input Capture1 prescaler new value. * This parameter can be one of the following values: * @arg TIM_ICPSC_DIV1: no prescaler * @arg TIM_ICPSC_DIV2: capture is done once every 2 events * @arg TIM_ICPSC_DIV4: capture is done once every 4 events * @arg TIM_ICPSC_DIV8: capture is done once every 8 events * @retval None */ void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC)); /* Reset the IC1PSC Bits */ TIMx->CCMR1 &= (uint32_t)~TIM_CCMR1_IC1PSC; /* Set the IC1PSC value */ TIMx->CCMR1 |= TIM_ICPSC; } /** * @brief Sets the TIMx Input Capture 2 prescaler. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_ICPSC: specifies the Input Capture2 prescaler new value. * This parameter can be one of the following values: * @arg TIM_ICPSC_DIV1: no prescaler * @arg TIM_ICPSC_DIV2: capture is done once every 2 events * @arg TIM_ICPSC_DIV4: capture is done once every 4 events * @arg TIM_ICPSC_DIV8: capture is done once every 8 events * @retval None */ void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC)); /* Reset the IC2PSC Bits */ TIMx->CCMR1 &= (uint32_t)~TIM_CCMR1_IC2PSC; /* Set the IC2PSC value */ TIMx->CCMR1 |= (uint32_t)((uint32_t)TIM_ICPSC << 8); } /** * @brief Sets the TIMx Input Capture 3 prescaler. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ICPSC: specifies the Input Capture3 prescaler new value. * This parameter can be one of the following values: * @arg TIM_ICPSC_DIV1: no prescaler * @arg TIM_ICPSC_DIV2: capture is done once every 2 events * @arg TIM_ICPSC_DIV4: capture is done once every 4 events * @arg TIM_ICPSC_DIV8: capture is done once every 8 events * @retval None */ void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC)); /* Reset the IC3PSC Bits */ TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC3PSC; /* Set the IC3PSC value */ TIMx->CCMR2 |= TIM_ICPSC; } /** * @brief Sets the TIMx Input Capture 4 prescaler. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ICPSC: specifies the Input Capture4 prescaler new value. * This parameter can be one of the following values: * @arg TIM_ICPSC_DIV1: no prescaler * @arg TIM_ICPSC_DIV2: capture is done once every 2 events * @arg TIM_ICPSC_DIV4: capture is done once every 4 events * @arg TIM_ICPSC_DIV8: capture is done once every 8 events * @retval None */ void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC)); /* Reset the IC4PSC Bits */ TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC4PSC; /* Set the IC4PSC value */ TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8); } /** * @} */ /** @defgroup TIM_Group4 Advanced-control timers (TIM1 and TIM8) specific features * @brief Advanced-control timers (TIM1 and TIM8) specific features * @verbatim =============================================================================== ##### Advanced-control timers (TIM1 and TIM8) specific features ##### =============================================================================== *** TIM Driver: how to use the Break feature *** ================================================ [..] After configuring the Timer channel(s) in the appropriate Output Compare mode: (#) Fill the TIM_BDTRInitStruct with the desired parameters for the Timer Break Polarity, dead time, Lock level, the OSSI/OSSR State and the AOE(automatic output enable). (#) Call TIM_BDTRConfig(TIMx, &TIM_BDTRInitStruct) to configure the Timer (#) Enable the Main Output using TIM_CtrlPWMOutputs(TIM1, ENABLE) (#) Once the break even occurs, the Timer's output signals are put in reset state or in a known state (according to the configuration made in TIM_BDTRConfig() function). @endverbatim * @{ */ /** * @brief Configures the Break feature, dead time, Lock level, OSSI/OSSR State * and the AOE(automatic output enable). * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM * @param TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that * contains the BDTR Register configuration information for the TIM peripheral. * @retval None */ void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct) { /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState)); assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState)); assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel)); assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break)); assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity)); assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput)); /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State, the OSSI State, the dead time value and the Automatic Output Enable Bit */ TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState | TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime | TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity | TIM_BDTRInitStruct->TIM_AutomaticOutput; } /** * @brief Configures the Break1 feature. * @param TIMx: where x can be 1 or 8 to select the TIM * @param TIM_Break1Polarity: specifies the Break1 polarity. * This parameter can be one of the following values: * @arg TIM_Break1Polarity_Low: Break1 input is active low * @arg TIM_Break1Polarity_High: Break1 input is active high * @param TIM_Break1Filter: specifies the Break1 filter value. * This parameter must be a value between 0x00 and 0x0F * @retval None */ void TIM_Break1Config(TIM_TypeDef* TIMx, uint32_t TIM_Break1Polarity, uint8_t TIM_Break1Filter) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_BREAK1_FILTER(TIM_Break1Filter)); /* Reset the BKP and BKF Bits */ TIMx->BDTR &= (uint32_t)~ (TIM_BDTR_BKP | TIM_BDTR_BKF); /* Configure the Break1 polarity and filter */ TIMx->BDTR |= TIM_Break1Polarity |((uint32_t)TIM_Break1Filter << 16); } /** * @brief Configures the Break2 feature. * @param TIMx: where x can be 1 or 8 to select the TIM * @param TIM_Break2Polarity: specifies the Break2 polarity. * This parameter can be one of the following values: * @arg TIM_Break2Polarity_Low: Break2 input is active low * @arg TIM_Break2Polarity_High: Break2 input is active high * @param TIM_Break2Filter: specifies the Break2 filter value. * This parameter must be a value between 0x00 and 0x0F * @retval None */ void TIM_Break2Config(TIM_TypeDef* TIMx, uint32_t TIM_Break2Polarity, uint8_t TIM_Break2Filter) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_BREAK2_FILTER(TIM_Break2Filter)); /* Reset the BKP and BKF Bits */ TIMx->BDTR &= (uint32_t)~ (TIM_BDTR_BK2P | TIM_BDTR_BK2F); /* Configure the Break1 polarity and filter */ TIMx->BDTR |= TIM_Break2Polarity |((uint32_t)TIM_Break2Filter << 20); } /** * @brief Enables or disables the TIM Break1 input. * @param TIMx: where x can be 1, 8, 1, 16 or 17 to select the TIMx peripheral. * @param NewState: new state of the TIM Break1 input. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_Break1Cmd(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the Break1 */ TIMx->BDTR |= TIM_BDTR_BKE; } else { /* Disable the Break1 */ TIMx->BDTR &= (uint32_t)~TIM_BDTR_BKE; } } /** * @brief Enables or disables the TIM Break2 input. * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral. * @param NewState: new state of the TIM Break2 input. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_Break2Cmd(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the Break1 */ TIMx->BDTR |= TIM_BDTR_BK2E; } else { /* Disable the Break1 */ TIMx->BDTR &= (uint32_t)~TIM_BDTR_BK2E; } } /** * @brief Fills each TIM_BDTRInitStruct member with its default value. * @param TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which * will be initialized. * @retval None */ void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct) { /* Set the default configuration */ TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable; TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable; TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF; TIM_BDTRInitStruct->TIM_DeadTime = 0x00; TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable; TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low; TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable; } /** * @brief Enables or disables the TIM peripheral Main Outputs. * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral. * @param NewState: new state of the TIM peripheral Main Outputs. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the TIM Main Output */ TIMx->BDTR |= TIM_BDTR_MOE; } else { /* Disable the TIM Main Output */ TIMx->BDTR &= (uint16_t)~TIM_BDTR_MOE; } } /** * @brief Selects the TIM peripheral Commutation event. * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral * @param NewState: new state of the Commutation event. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the COM Bit */ TIMx->CR2 |= TIM_CR2_CCUS; } else { /* Reset the COM Bit */ TIMx->CR2 &= (uint16_t)~TIM_CR2_CCUS; } } /** * @brief Sets or Resets the TIM peripheral Capture Compare Preload Control bit. * @param TIMx: where x can be 1 or 8 to select the TIMx peripheral * @param NewState: new state of the Capture Compare Preload Control bit * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST6_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the CCPC Bit */ TIMx->CR2 |= TIM_CR2_CCPC; } else { /* Reset the CCPC Bit */ TIMx->CR2 &= (uint16_t)~TIM_CR2_CCPC; } } /** * @} */ /** @defgroup TIM_Group5 Interrupts DMA and flags management functions * @brief Interrupts, DMA and flags management functions * @verbatim =============================================================================== ##### Interrupts, DMA and flags management functions ##### =============================================================================== @endverbatim * @{ */ /** * @brief Enables or disables the specified TIM interrupts. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIMx peripheral. * @param TIM_IT: specifies the TIM interrupts sources to be enabled or disabled. * This parameter can be any combination of the following values: * @arg TIM_IT_Update: TIM update Interrupt source * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source * @arg TIM_IT_COM: TIM Commutation Interrupt source * @arg TIM_IT_Trigger: TIM Trigger Interrupt source * @arg TIM_IT_Break: TIM Break Interrupt source * * @note For TIM6 and TIM7 only the parameter TIM_IT_Update can be used * @note For TIM9 and TIM12 only one of the following parameters can be used: TIM_IT_Update, * TIM_IT_CC1, TIM_IT_CC2 or TIM_IT_Trigger. * @note For TIM10, TIM11, TIM13 and TIM14 only one of the following parameters can * be used: TIM_IT_Update or TIM_IT_CC1 * @note TIM_IT_COM and TIM_IT_Break can be used only with TIM1 and TIM8 * * @param NewState: new state of the TIM interrupts. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_IT(TIM_IT)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the Interrupt sources */ TIMx->DIER |= TIM_IT; } else { /* Disable the Interrupt sources */ TIMx->DIER &= (uint16_t)~TIM_IT; } } /** * @brief Configures the TIMx event to be generate by software. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_EventSource: specifies the event source. * This parameter can be one or more of the following values: * @arg TIM_EventSource_Update: Timer update Event source * @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source * @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source * @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source * @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source * @arg TIM_EventSource_COM: Timer COM event source * @arg TIM_EventSource_Trigger: Timer Trigger Event source * @arg TIM_EventSource_Break: Timer Break event source * * @note TIM6 and TIM7 can only generate an update event. * @note TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8. * * @retval None */ void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource)); /* Set the event sources */ TIMx->EGR = TIM_EventSource; } /** * @brief Checks whether the specified TIM flag is set or not. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_FLAG: specifies the flag to check. * This parameter can be one of the following values: * @arg TIM_FLAG_Update: TIM update Flag * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag * @arg TIM_FLAG_CC5: TIM Capture Compare 5 Flag * @arg TIM_FLAG_CC6: TIM Capture Compare 6 Flag * @arg TIM_FLAG_COM: TIM Commutation Flag * @arg TIM_FLAG_Trigger: TIM Trigger Flag * @arg TIM_FLAG_Break: TIM Break Flag * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag * * @note TIM6 and TIM7 can have only one update flag. * @note TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8. * * @retval The new state of TIM_FLAG (SET or RESET). */ FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint32_t TIM_FLAG) { ITStatus bitstatus = RESET; /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_GET_FLAG(TIM_FLAG)); if ((TIMx->SR & TIM_FLAG) != RESET) { bitstatus = SET; } else { bitstatus = RESET; } return bitstatus; } /** * @brief Clears the TIMx's pending flags. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_FLAG: specifies the flag bit to clear. * This parameter can be any combination of the following values: * @arg TIM_FLAG_Update: TIM update Flag * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag * @arg TIM_FLAG_CC5: TIM Capture Compare 5 Flag * @arg TIM_FLAG_CC6: TIM Capture Compare 6 Flag * @arg TIM_FLAG_COM: TIM Commutation Flag * @arg TIM_FLAG_Trigger: TIM Trigger Flag * @arg TIM_FLAG_Break: TIM Break Flag * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag * * @note TIM6 and TIM7 can have only one update flag. * @note TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8. * * @retval None */ void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); /* Clear the flags */ TIMx->SR = (uint16_t)~TIM_FLAG; } /** * @brief Checks whether the TIM interrupt has occurred or not. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_IT: specifies the TIM interrupt source to check. * This parameter can be one of the following values: * @arg TIM_IT_Update: TIM update Interrupt source * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source * @arg TIM_IT_COM: TIM Commutation Interrupt source * @arg TIM_IT_Trigger: TIM Trigger Interrupt source * @arg TIM_IT_Break: TIM Break Interrupt source * * @note TIM6 and TIM7 can generate only an update interrupt. * @note TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8. * * @retval The new state of the TIM_IT(SET or RESET). */ ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT) { ITStatus bitstatus = RESET; uint16_t itstatus = 0x0, itenable = 0x0; /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_GET_IT(TIM_IT)); itstatus = TIMx->SR & TIM_IT; itenable = TIMx->DIER & TIM_IT; if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET)) { bitstatus = SET; } else { bitstatus = RESET; } return bitstatus; } /** * @brief Clears the TIMx's interrupt pending bits. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_IT: specifies the pending bit to clear. * This parameter can be any combination of the following values: * @arg TIM_IT_Update: TIM1 update Interrupt source * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source * @arg TIM_IT_COM: TIM Commutation Interrupt source * @arg TIM_IT_Trigger: TIM Trigger Interrupt source * @arg TIM_IT_Break: TIM Break Interrupt source * * @note TIM6 and TIM7 can generate only an update interrupt. * @note TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8. * * @retval None */ void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); /* Clear the IT pending Bit */ TIMx->SR = (uint16_t)~TIM_IT; } /** * @brief Configures the TIMx's DMA interface. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_DMABase: DMA Base address. * This parameter can be one of the following values: * @arg TIM_DMABase_CR1 * @arg TIM_DMABase_CR2 * @arg TIM_DMABase_SMCR * @arg TIM_DMABase_DIER * @arg TIM1_DMABase_SR * @arg TIM_DMABase_EGR * @arg TIM_DMABase_CCMR1 * @arg TIM_DMABase_CCMR2 * @arg TIM_DMABase_CCER * @arg TIM_DMABase_CNT * @arg TIM_DMABase_PSC * @arg TIM_DMABase_ARR * @arg TIM_DMABase_RCR * @arg TIM_DMABase_CCR1 * @arg TIM_DMABase_CCR2 * @arg TIM_DMABase_CCR3 * @arg TIM_DMABase_CCR4 * @arg TIM_DMABase_BDTR * @arg TIM_DMABase_DCR * @param TIM_DMABurstLength: DMA Burst length. This parameter can be one value * between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers. * @retval None */ void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_TIM_DMA_BASE(TIM_DMABase)); assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength)); /* Set the DMA Base and the DMA Burst Length */ TIMx->DCR = TIM_DMABase | TIM_DMABurstLength; } /** * @brief Enables or disables the TIMx's DMA Requests. * @param TIMx: where x can be 1, 2, 3, 4, 6, 7, 8, 15, 16 or 17 to select the TIM peripheral. * @param TIM_DMASource: specifies the DMA Request sources. * This parameter can be any combination of the following values: * @arg TIM_DMA_Update: TIM update Interrupt source * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source * @arg TIM_DMA_COM: TIM Commutation DMA source * @arg TIM_DMA_Trigger: TIM Trigger DMA source * @param NewState: new state of the DMA Request sources. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_ALL_PERIPH(TIMx)); assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Enable the DMA sources */ TIMx->DIER |= TIM_DMASource; } else { /* Disable the DMA sources */ TIMx->DIER &= (uint16_t)~TIM_DMASource; } } /** * @brief Selects the TIMx peripheral Capture Compare DMA source. * @param TIMx: where x can be 1, 2, 3, 4, 8, 15, 16 or 17 to select the TIM peripheral. * @param NewState: new state of the Capture Compare DMA source * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST1_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the CCDS Bit */ TIMx->CR2 |= TIM_CR2_CCDS; } else { /* Reset the CCDS Bit */ TIMx->CR2 &= (uint16_t)~TIM_CR2_CCDS; } } /** * @} */ /** @defgroup TIM_Group6 Clocks management functions * @brief Clocks management functions * @verbatim =============================================================================== ##### Clocks management functions ##### =============================================================================== @endverbatim * @{ */ /** * @brief Configures the TIMx internal Clock * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @retval None */ void TIM_InternalClockConfig(TIM_TypeDef* TIMx) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); /* Disable slave mode to clock the prescaler directly with the internal clock */ TIMx->SMCR &= (uint16_t)~TIM_SMCR_SMS; } /** * @brief Configures the TIMx Internal Trigger as External Clock * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param TIM_InputTriggerSource: Trigger source. * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal Trigger 0 * @arg TIM_TS_ITR1: Internal Trigger 1 * @arg TIM_TS_ITR2: Internal Trigger 2 * @arg TIM_TS_ITR3: Internal Trigger 3 * @retval None */ void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource)); /* Select the Internal Trigger */ TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource); /* Select the External clock mode1 */ TIMx->SMCR |= TIM_SlaveMode_External1; } /** * @brief Configures the TIMx Trigger as External Clock * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 * to select the TIM peripheral. * @param TIM_TIxExternalCLKSource: Trigger source. * This parameter can be one of the following values: * @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector * @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1 * @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2 * @param TIM_ICPolarity: specifies the TIx Polarity. * This parameter can be one of the following values: * @arg TIM_ICPolarity_Rising * @arg TIM_ICPolarity_Falling * @param ICFilter: specifies the filter value. * This parameter must be a value between 0x0 and 0xF. * @retval None */ void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource, uint16_t TIM_ICPolarity, uint16_t ICFilter) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity)); assert_param(IS_TIM_IC_FILTER(ICFilter)); /* Configure the Timer Input Clock Source */ if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2) { TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter); } else { TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter); } /* Select the Trigger source */ TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource); /* Select the External clock mode1 */ TIMx->SMCR |= TIM_SlaveMode_External1; } /** * @brief Configures the External clock Mode1 * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler. * This parameter can be one of the following values: * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF. * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2. * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4. * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8. * @param TIM_ExtTRGPolarity: The external Trigger Polarity. * This parameter can be one of the following values: * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active. * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active. * @param ExtTRGFilter: External Trigger Filter. * This parameter must be a value between 0x00 and 0x0F * @retval None */ void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter) { uint16_t tmpsmcr = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler)); assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity)); assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter)); /* Configure the ETR Clock source */ TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter); /* Get the TIMx SMCR register value */ tmpsmcr = TIMx->SMCR; /* Reset the SMS Bits */ tmpsmcr &= (uint16_t)~TIM_SMCR_SMS; /* Select the External clock mode1 */ tmpsmcr |= TIM_SlaveMode_External1; /* Select the Trigger selection : ETRF */ tmpsmcr &= (uint16_t)~TIM_SMCR_TS; tmpsmcr |= TIM_TS_ETRF; /* Write to TIMx SMCR */ TIMx->SMCR = tmpsmcr; } /** * @brief Configures the External clock Mode2 * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler. * This parameter can be one of the following values: * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF. * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2. * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4. * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8. * @param TIM_ExtTRGPolarity: The external Trigger Polarity. * This parameter can be one of the following values: * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active. * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active. * @param ExtTRGFilter: External Trigger Filter. * This parameter must be a value between 0x00 and 0x0F * @retval None */ void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter) { /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler)); assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity)); assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter)); /* Configure the ETR Clock source */ TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter); /* Enable the External clock mode2 */ TIMx->SMCR |= TIM_SMCR_ECE; } /** * @} */ /** @defgroup TIM_Group7 Synchronization management functions * @brief Synchronization management functions * @verbatim =============================================================================== ##### Synchronization management functions ##### =============================================================================== *** TIM Driver: how to use it in synchronization Mode *** ========================================================= [..] Case of two/several Timers (#) Configure the Master Timers using the following functions: (++) void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource); (++) void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode); (#) Configure the Slave Timers using the following functions: (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource); (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); [..] Case of Timers and external trigger(ETR pin) (#) Configure the External trigger using this function: (++) void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter); (#) Configure the Slave Timers using the following functions: (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource); (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); @endverbatim * @{ */ /** * @brief Selects the Input Trigger source * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 * to select the TIM peripheral. * @param TIM_InputTriggerSource: The Input Trigger source. * This parameter can be one of the following values: * @arg TIM_TS_ITR0: Internal Trigger 0 * @arg TIM_TS_ITR1: Internal Trigger 1 * @arg TIM_TS_ITR2: Internal Trigger 2 * @arg TIM_TS_ITR3: Internal Trigger 3 * @arg TIM_TS_TI1F_ED: TI1 Edge Detector * @arg TIM_TS_TI1FP1: Filtered Timer Input 1 * @arg TIM_TS_TI2FP2: Filtered Timer Input 2 * @arg TIM_TS_ETRF: External Trigger input * @retval None */ void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource) { uint16_t tmpsmcr = 0; /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource)); /* Get the TIMx SMCR register value */ tmpsmcr = TIMx->SMCR; /* Reset the TS Bits */ tmpsmcr &= (uint16_t)~TIM_SMCR_TS; /* Set the Input Trigger source */ tmpsmcr |= TIM_InputTriggerSource; /* Write to TIMx SMCR */ TIMx->SMCR = tmpsmcr; } /** * @brief Selects the TIMx Trigger Output Mode. * @param TIMx: where x can be 1, 2, 3, 4, 5, 6, 7, 8 or 15 to select the TIM peripheral. * * @param TIM_TRGOSource: specifies the Trigger Output source. * This parameter can be one of the following values: * * - For all TIMx * @arg TIM_TRGOSource_Reset: The UG bit in the TIM_EGR register is used as the trigger output(TRGO) * @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO) * @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO) * * - For all TIMx except TIM6 and TIM7 * @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag * is to be set, as soon as a capture or compare match occurs(TRGO) * @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO) * @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO) * @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO) * @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO) * * @retval None */ void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource) { /* Check the parameters */ assert_param(IS_TIM_LIST7_PERIPH(TIMx)); assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource)); /* Reset the MMS Bits */ TIMx->CR2 &= (uint16_t)~TIM_CR2_MMS; /* Select the TRGO source */ TIMx->CR2 |= TIM_TRGOSource; } /** * @brief Selects the TIMx Trigger Output Mode2 (TRGO2). * @param TIMx: where x can be 1 or 8 to select the TIM peripheral. * * @param TIM_TRGO2Source: specifies the Trigger Output source. * This parameter can be one of the following values: * * - For all TIMx * @arg TIM_TRGOSource_Reset: The UG bit in the TIM_EGR register is used as the trigger output(TRGO2) * @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO2) * @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO2) * @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag * is to be set, as soon as a capture or compare match occurs(TRGO2) * @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO2) * @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO2) * @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO2) * @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO2) * @arg TIM_TRGO2Source_OC4Ref_RisingFalling: OC4Ref Rising and Falling are used as the trigger output(TRGO2) * @arg TIM_TRGO2Source_OC6Ref_RisingFalling: OC6Ref Rising and Falling are used as the trigger output(TRGO2) * @arg TIM_TRGO2Source_OC4RefRising_OC6RefRising: OC4Ref Rising and OC6Ref Rising are used as the trigger output(TRGO2) * @arg TIM_TRGO2Source_OC4RefRising_OC6RefFalling: OC4Ref Rising and OC6Ref Falling are used as the trigger output(TRGO2) * @arg TIM_TRGO2Source_OC5RefRising_OC6RefRising: OC5Ref Rising and OC6Ref Rising are used as the trigger output(TRGO2) * @arg TIM_TRGO2Source_OC5RefRising_OC6RefFalling: OC5Ref Rising and OC6Ref Falling are used as the trigger output(TRGO2) * * @retval None */ void TIM_SelectOutputTrigger2(TIM_TypeDef* TIMx, uint32_t TIM_TRGO2Source) { /* Check the parameters */ assert_param(IS_TIM_LIST4_PERIPH(TIMx)); assert_param(IS_TIM_TRGO2_SOURCE(TIM_TRGO2Source)); /* Reset the MMS Bits */ TIMx->CR2 &= (uint32_t)~TIM_CR2_MMS2; /* Select the TRGO source */ TIMx->CR2 |= TIM_TRGO2Source; } /** * @brief Selects the TIMx Slave Mode. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM peripheral. * @param TIM_SlaveMode: specifies the Timer Slave Mode. * This parameter can be one of the following values: * @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal(TRGI) reinitialize * the counter and triggers an update of the registers * @arg TIM_SlaveMode_Gated: The counter clock is enabled when the trigger signal (TRGI) is high * @arg TIM_SlaveMode_Trigger: The counter starts at a rising edge of the trigger TRGI * @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter * @arg TIM_SlaveMode_Combined_ResetTrigger: Rising edge of the selected trigger input (TRGI) * reinitializes the counter, generates an update * of the registers and starts the counter. * @retval None */ void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint32_t TIM_SlaveMode) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode)); /* Reset the SMS Bits */ TIMx->SMCR &= (uint32_t)~TIM_SMCR_SMS; /* Select the Slave Mode */ TIMx->SMCR |= (uint32_t)TIM_SlaveMode; } /** * @brief Sets or Resets the TIMx Master/Slave Mode. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM peripheral. * @param TIM_MasterSlaveMode: specifies the Timer Master Slave Mode. * This parameter can be one of the following values: * @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer * and its slaves (through TRGO) * @arg TIM_MasterSlaveMode_Disable: No action * @retval None */ void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode)); /* Reset the MSM Bit */ TIMx->SMCR &= (uint16_t)~TIM_SMCR_MSM; /* Set or Reset the MSM Bit */ TIMx->SMCR |= TIM_MasterSlaveMode; } /** * @brief Configures the TIMx External Trigger (ETR). * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM peripheral. * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler. * This parameter can be one of the following values: * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF. * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2. * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4. * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8. * @param TIM_ExtTRGPolarity: The external Trigger Polarity. * This parameter can be one of the following values: * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active. * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active. * @param ExtTRGFilter: External Trigger Filter. * This parameter must be a value between 0x00 and 0x0F * @retval None */ void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter) { uint16_t tmpsmcr = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler)); assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity)); assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter)); tmpsmcr = TIMx->SMCR; /* Reset the ETR Bits */ tmpsmcr &= SMCR_ETR_MASK; /* Set the Prescaler, the Filter value and the Polarity */ tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8))); /* Write to TIMx SMCR */ TIMx->SMCR = tmpsmcr; } /** * @} */ /** @defgroup TIM_Group8 Specific interface management functions * @brief Specific interface management functions * @verbatim =============================================================================== ##### Specific interface management functions ##### =============================================================================== @endverbatim * @{ */ /** * @brief Configures the TIMx Encoder Interface. * @param TIMx: where x can be 1, 2, 3, 4 or 8 to select the TIM * peripheral. * @param TIM_EncoderMode: specifies the TIMx Encoder Mode. * This parameter can be one of the following values: * @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level. * @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level. * @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending * on the level of the other input. * @param TIM_IC1Polarity: specifies the IC1 Polarity * This parameter can be one of the following values: * @arg TIM_ICPolarity_Falling: IC Falling edge. * @arg TIM_ICPolarity_Rising: IC Rising edge. * @param TIM_IC2Polarity: specifies the IC2 Polarity * This parameter can be one of the following values: * @arg TIM_ICPolarity_Falling: IC Falling edge. * @arg TIM_ICPolarity_Rising: IC Rising edge. * @retval None */ void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode, uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity) { uint16_t tmpsmcr = 0; uint16_t tmpccmr1 = 0; uint16_t tmpccer = 0; /* Check the parameters */ assert_param(IS_TIM_LIST3_PERIPH(TIMx)); assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode)); assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity)); assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity)); /* Get the TIMx SMCR register value */ tmpsmcr = TIMx->SMCR; /* Get the TIMx CCMR1 register value */ tmpccmr1 = TIMx->CCMR1; /* Get the TIMx CCER register value */ tmpccer = TIMx->CCER; /* Set the encoder Mode */ tmpsmcr &= (uint16_t)~TIM_SMCR_SMS; tmpsmcr |= TIM_EncoderMode; /* Select the Capture Compare 1 and the Capture Compare 2 as input */ tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_CC2S); tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0; /* Set the TI1 and the TI2 Polarities */ tmpccer &= ((uint16_t)~TIM_CCER_CC1P) & ((uint16_t)~TIM_CCER_CC2P); tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4)); /* Write to TIMx SMCR */ TIMx->SMCR = tmpsmcr; /* Write to TIMx CCMR1 */ TIMx->CCMR1 = tmpccmr1; /* Write to TIMx CCER */ TIMx->CCER = tmpccer; } /** * @brief Enables or disables the TIMx's Hall sensor interface. * @param TIMx: where x can be 1, 2, 3, 4, 8 or 15 to select the TIM * peripheral. * @param NewState: new state of the TIMx Hall sensor interface. * This parameter can be: ENABLE or DISABLE. * @retval None */ void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState) { /* Check the parameters */ assert_param(IS_TIM_LIST2_PERIPH(TIMx)); assert_param(IS_FUNCTIONAL_STATE(NewState)); if (NewState != DISABLE) { /* Set the TI1S Bit */ TIMx->CR2 |= TIM_CR2_TI1S; } else { /* Reset the TI1S Bit */ TIMx->CR2 &= (uint16_t)~TIM_CR2_TI1S; } } /** * @} */ /** @defgroup TIM_Group9 Specific remapping management function * @brief Specific remapping management function * @verbatim =============================================================================== ##### Specific remapping management function ##### =============================================================================== @endverbatim * @{ */ /** * @brief Configures the TIM16 Remapping input Capabilities. * @param TIMx: where x can be 1, 8 or 16 to select the TIM peripheral. * @param TIM_Remap: specifies the TIM input reampping source. * This parameter can be one of the following values: * @arg TIM16_GPIO: TIM16 Channel 1 is connected to GPIO. * @arg TIM16_RTC_CLK: TIM16 Channel 1 is connected to RTC input clock. * @arg TIM16_HSE_DIV32: TIM16 Channel 1 is connected to HSE/32 clock. * @arg TIM16_MCO: TIM16 Channel 1 is connected to MCO clock. * @arg TIM1_ADC1_AWDG1: TIM1 ETR is connected to ADC1 AWDG1. * @arg TIM1_ADC1_AWDG2: TIM1 ETR is connected to ADC1 AWDG2. * @arg TIM1_ADC1_AWDG3: TIM1 ETR is connected to ADC1 AWDG3. * @arg TIM1_ADC4_AWDG1: TIM1 ETR is connected to ADC4 AWDG1. * @arg TIM1_ADC4_AWDG2: TIM1 ETR is connected to ADC4 AWDG2. * @arg TIM1_ADC4_AWDG3: TIM1 ETR is connected to ADC4 AWDG3. * @arg TIM8_ADC2_AWDG1: TIM8 ETR is connected to ADC2 AWDG1. * @arg TIM8_ADC2_AWDG2: TIM8 ETR is connected to ADC2 AWDG2. * @arg TIM8_ADC2_AWDG3: TIM8 ETR is connected to ADC2 AWDG3. * @arg TIM8_ADC4_AWDG1: TIM8 ETR is connected to ADC4 AWDG1. * @arg TIM8_ADC4_AWDG2: TIM8 ETR is connected to ADC4 AWDG2. * @arg TIM8_ADC4_AWDG3: TIM8 ETR is connected to ADC4 AWDG3. * @retval : None */ void TIM_RemapConfig(TIM_TypeDef* TIMx, uint16_t TIM_Remap) { /* Check the parameters */ assert_param(IS_TIM_LIST8_PERIPH(TIMx)); assert_param(IS_TIM_REMAP(TIM_Remap)); /* Set the Timer remapping configuration */ TIMx->OR = TIM_Remap; } /** * @} */ /** * @brief Configure the TI1 as Input. * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14 * to select the TIM peripheral. * @param TIM_ICPolarity : The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPolarity_Rising * @arg TIM_ICPolarity_Falling * @arg TIM_ICPolarity_BothEdge * @param TIM_ICSelection: specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1. * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2. * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC. * @param TIM_ICFilter: Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter) { uint32_t tmpccmr1 = 0, tmpccer = 0; /* Disable the Channel 1: Reset the CC1E Bit */ TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E; tmpccmr1 = TIMx->CCMR1; tmpccer = TIMx->CCER; /* Select the Input and set the filter */ tmpccmr1 &= ((uint32_t)~TIM_CCMR1_CC1S) & ((uint32_t)~TIM_CCMR1_IC1F); tmpccmr1 |= (uint32_t)(TIM_ICSelection | (uint32_t)((uint32_t)TIM_ICFilter << 4)); /* Select the Polarity and set the CC1E Bit */ tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP); tmpccer |= (uint32_t)(TIM_ICPolarity | (uint32_t)TIM_CCER_CC1E); /* Write to TIMx CCMR1 and CCER registers */ TIMx->CCMR1 = tmpccmr1; TIMx->CCER = tmpccer; } /** * @brief Configure the TI2 as Input. * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM * peripheral. * @param TIM_ICPolarity : The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPolarity_Rising * @arg TIM_ICPolarity_Falling * @arg TIM_ICPolarity_BothEdge * @param TIM_ICSelection: specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2. * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1. * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC. * @param TIM_ICFilter: Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter) { uint32_t tmpccmr1 = 0, tmpccer = 0, tmp = 0; /* Disable the Channel 2: Reset the CC2E Bit */ TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E; tmpccmr1 = TIMx->CCMR1; tmpccer = TIMx->CCER; tmp = (uint16_t)(TIM_ICPolarity << 4); /* Select the Input and set the filter */ tmpccmr1 &= ((uint32_t)~TIM_CCMR1_CC2S) & ((uint32_t)~TIM_CCMR1_IC2F); tmpccmr1 |= (uint32_t)((uint32_t)TIM_ICFilter << 12); tmpccmr1 |= (uint32_t)((uint32_t)TIM_ICSelection << 8); /* Select the Polarity and set the CC2E Bit */ tmpccer &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP); tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E); /* Write to TIMx CCMR1 and CCER registers */ TIMx->CCMR1 = tmpccmr1 ; TIMx->CCER = tmpccer; } /** * @brief Configure the TI3 as Input. * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral. * @param TIM_ICPolarity : The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPolarity_Rising * @arg TIM_ICPolarity_Falling * @arg TIM_ICPolarity_BothEdge * @param TIM_ICSelection: specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3. * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4. * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC. * @param TIM_ICFilter: Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter) { uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0; /* Disable the Channel 3: Reset the CC3E Bit */ TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E; tmpccmr2 = TIMx->CCMR2; tmpccer = TIMx->CCER; tmp = (uint16_t)(TIM_ICPolarity << 8); /* Select the Input and set the filter */ tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR2_IC3F); tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4)); /* Select the Polarity and set the CC3E Bit */ tmpccer &= (uint16_t)~(TIM_CCER_CC3P | TIM_CCER_CC3NP); tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E); /* Write to TIMx CCMR2 and CCER registers */ TIMx->CCMR2 = tmpccmr2; TIMx->CCER = tmpccer; } /** * @brief Configure the TI4 as Input. * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral. * @param TIM_ICPolarity : The Input Polarity. * This parameter can be one of the following values: * @arg TIM_ICPolarity_Rising * @arg TIM_ICPolarity_Falling * @arg TIM_ICPolarity_BothEdge * @param TIM_ICSelection: specifies the input to be used. * This parameter can be one of the following values: * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4. * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3. * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC. * @param TIM_ICFilter: Specifies the Input Capture Filter. * This parameter must be a value between 0x00 and 0x0F. * @retval None */ static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection, uint16_t TIM_ICFilter) { uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0; /* Disable the Channel 4: Reset the CC4E Bit */ TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E; tmpccmr2 = TIMx->CCMR2; tmpccer = TIMx->CCER; tmp = (uint16_t)(TIM_ICPolarity << 12); /* Select the Input and set the filter */ tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F); tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8); tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12); /* Select the Polarity and set the CC4E Bit */ tmpccer &= (uint16_t)~(TIM_CCER_CC4P | TIM_CCER_CC4NP); tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E); /* Write to TIMx CCMR2 and CCER registers */ TIMx->CCMR2 = tmpccmr2; TIMx->CCER = tmpccer ; } /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/