/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "serial_api.h" // math.h required for floating point operations for baud rate calculation #include #include #include "cmsis.h" #include "pinmap.h" #include "clk_freqs.h" #include "PeripheralPins.h" //Devices either user UART0 or UARTLP #ifndef UARTLP_BASES #define UARTLP_C2_RE_MASK UART0_C2_RE_MASK #define UARTLP_C2_TE_MASK UART0_C2_TE_MASK #define UARTLP_BDH_SBNS_MASK UART0_BDH_SBNS_MASK #define UARTLP_BDH_SBNS_SHIFT UART0_BDH_SBNS_SHIFT #define UARTLP_S1_TDRE_MASK UART0_S1_TDRE_MASK #define UARTLP_S1_OR_MASK UART0_S1_OR_MASK #define UARTLP_C2_RIE_MASK UART0_C2_RIE_MASK #define UARTLP_C2_TIE_MASK UART0_C2_TIE_MASK #define UARTLP_C2_SBK_MASK UART0_C2_SBK_MASK #define UARTLP_S1_RDRF_MASK UART0_S1_RDRF_MASK #endif #ifdef UART2 #define UART_NUM 3 #else #define UART_NUM 1 #endif /****************************************************************************** * INITIALIZATION ******************************************************************************/ static uint32_t serial_irq_ids[UART_NUM] = {0}; static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; void serial_init(serial_t *obj, PinName tx, PinName rx) { // determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT((int)uart != NC); obj->uart = (UARTLP_Type *)uart; // enable clk switch (uart) { case UART_0: if (mcgpllfll_frequency() != 0) //PLL/FLL is selected SIM->SOPT2 |= (1<SOPT2 |= (2<SCGC4 |= SIM_SCGC4_UART0_MASK; break; #if UART_NUM > 1 case UART_1: SIM->SCGC4 |= SIM_SCGC4_UART1_MASK; break; case UART_2: SIM->SCGC4 |= SIM_SCGC4_UART2_MASK; break; #endif } // Disable UART before changing registers obj->uart->C2 &= ~(UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK); switch (uart) { case UART_0: obj->index = 0; break; #if UART_NUM > 1 case UART_1: obj->index = 1; break; case UART_2: obj->index = 2; break; #endif } // set default baud rate and format serial_baud (obj, 9600); serial_format(obj, 8, ParityNone, 1); // pinout the chosen uart pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); // set rx/tx pins in PullUp mode if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } obj->uart->C2 |= (UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK); if (uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { serial_irq_ids[obj->index] = 0; } // serial_baud // // set the baud rate, taking in to account the current SystemFrequency void serial_baud(serial_t *obj, int baudrate) { // save C2 state uint8_t c2_state = (obj->uart->C2 & (UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK)); // Disable UART before changing registers obj->uart->C2 &= ~(UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK); uint32_t PCLK; if (obj->uart == UART0) { if (mcgpllfll_frequency() != 0) PCLK = mcgpllfll_frequency(); else PCLK = extosc_frequency(); } else PCLK = bus_frequency(); // First we check to see if the basic divide with no DivAddVal/MulVal // ratio gives us an integer result. If it does, we set DivAddVal = 0, // MulVal = 1. Otherwise, we search the valid ratio value range to find // the closest match. This could be more elegant, using search methods // and/or lookup tables, but the brute force method is not that much // slower, and is more maintainable. uint16_t DL = PCLK / (16 * baudrate); // set BDH and BDL obj->uart->BDH = (obj->uart->BDH & ~(0x1f)) | ((DL >> 8) & 0x1f); obj->uart->BDL = (obj->uart->BDL & ~(0xff)) | ((DL >> 0) & 0xff); // restore C2 state obj->uart->C2 |= c2_state; } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven)); MBED_ASSERT(data_bits == 8); // TODO: Support other number of data bits (also in the write method!) // save C2 state uint8_t c2_state = (obj->uart->C2 & (UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK)); // Disable UART before changing registers obj->uart->C2 &= ~(UARTLP_C2_RE_MASK | UARTLP_C2_TE_MASK); uint8_t parity_enable, parity_select; switch (parity) { case ParityNone: parity_enable = 0; parity_select = 0; break; case ParityOdd : parity_enable = 1; parity_select = 1; data_bits++; break; case ParityEven: parity_enable = 1; parity_select = 0; data_bits++; break; default: break; } stop_bits -= 1; // data bits, parity and parity mode obj->uart->C1 = ((parity_enable << 1) | (parity_select << 0)); // stop bits obj->uart->BDH &= ~UARTLP_BDH_SBNS_MASK; obj->uart->BDH |= (stop_bits << UARTLP_BDH_SBNS_SHIFT); // restore C2 state obj->uart->C2 |= c2_state; } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint8_t status, uint32_t index) { if (serial_irq_ids[index] != 0) { if (status & UARTLP_S1_TDRE_MASK) irq_handler(serial_irq_ids[index], TxIrq); if (status & UARTLP_S1_RDRF_MASK) irq_handler(serial_irq_ids[index], RxIrq); } } void uart0_irq() { uart_irq(UART0->S1, 0); if (UART0->S1 & UARTLP_S1_OR_MASK) UART0->S1 |= UARTLP_S1_OR_MASK; } #if UART_NUM > 1 void uart1_irq() {uart_irq(UART1->S1, 1);} void uart2_irq() {uart_irq(UART2->S1, 2);} #endif void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch ((int)obj->uart) { case UART_0: irq_n=UART0_IRQn; vector = (uint32_t)&uart0_irq; break; #if UART_NUM > 1 case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break; case UART_2: irq_n=UART2_IRQn; vector = (uint32_t)&uart2_irq; break; #endif } if (enable) { switch (irq) { case RxIrq: obj->uart->C2 |= (UARTLP_C2_RIE_MASK); break; case TxIrq: obj->uart->C2 |= (UARTLP_C2_TIE_MASK); break; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); switch (irq) { case RxIrq: obj->uart->C2 &= ~(UARTLP_C2_RIE_MASK); break; case TxIrq: obj->uart->C2 &= ~(UARTLP_C2_TIE_MASK); break; } switch (other_irq) { case RxIrq: all_disabled = (obj->uart->C2 & (UARTLP_C2_RIE_MASK)) == 0; break; case TxIrq: all_disabled = (obj->uart->C2 & (UARTLP_C2_TIE_MASK)) == 0; break; } if (all_disabled) NVIC_DisableIRQ(irq_n); } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { while (!serial_readable(obj)); return obj->uart->D; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); obj->uart->D = c; } int serial_readable(serial_t *obj) { // check overrun if (obj->uart->S1 & UARTLP_S1_OR_MASK) { obj->uart->S1 |= UARTLP_S1_OR_MASK; } return (obj->uart->S1 & UARTLP_S1_RDRF_MASK); } int serial_writable(serial_t *obj) { // check overrun if (obj->uart->S1 & UARTLP_S1_OR_MASK) { obj->uart->S1 |= UARTLP_S1_OR_MASK; } return (obj->uart->S1 & UARTLP_S1_TDRE_MASK); } void serial_clear(serial_t *obj) { } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { obj->uart->C2 |= UARTLP_C2_SBK_MASK; } void serial_break_clear(serial_t *obj) { obj->uart->C2 &= ~UARTLP_C2_SBK_MASK; }