/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "serial_api.h" #if DEVICE_SERIAL // math.h required for floating point operations for baud rate calculation #include #include "mbed_assert.h" #include #include "cmsis.h" #include "pinmap.h" #include "fsl_uart_hal.h" #include "fsl_clock_manager.h" #include "fsl_uart_features.h" #include "PeripheralPins.h" /* TODO: putchar/getchar 9 and 10 bits support */ #ifndef UART3_BASE #define UART_NUM 3 #else #define UART_NUM 5 #endif static uint32_t serial_irq_ids[UART_NUM] = {0}; static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; void serial_init(serial_t *obj, PinName tx, PinName rx) { uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX); uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX); obj->index = pinmap_merge(uart_tx, uart_rx); MBED_ASSERT((int)obj->index != NC); uint32_t uartSourceClock = CLOCK_SYS_GetUartFreq(obj->index); CLOCK_SYS_EnableUartClock(obj->index); uint32_t uart_addrs[] = UART_BASE_ADDRS; UART_HAL_Init(uart_addrs[obj->index]); UART_HAL_SetBaudRate(uart_addrs[obj->index], uartSourceClock, 9600); UART_HAL_SetParityMode(uart_addrs[obj->index], kUartParityDisabled); #if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT UART_HAL_SetStopBitCount(uart_addrs[obj->index], kUartOneStopBit); #endif UART_HAL_SetBitCountPerChar(uart_addrs[obj->index], kUart8BitsPerChar); UART_HAL_EnableTransmitter(uart_addrs[obj->index]); UART_HAL_EnableReceiver(uart_addrs[obj->index]); pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } if (obj->index == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } while(!UART_HAL_IsTxDataRegEmpty(uart_addrs[obj->index])); } void serial_free(serial_t *obj) { serial_irq_ids[obj->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { uint32_t uart_addrs[] = UART_BASE_ADDRS; UART_HAL_SetBaudRate(uart_addrs[obj->index], CLOCK_SYS_GetUartFreq(obj->index), (uint32_t)baudrate); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { uint32_t uart_addrs[] = UART_BASE_ADDRS; UART_HAL_SetBitCountPerChar(uart_addrs[obj->index], (uart_bit_count_per_char_t)data_bits); UART_HAL_SetParityMode(uart_addrs[obj->index], (uart_parity_mode_t)parity); #if FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT UART_HAL_SetStopBitCount(uart_addrs[obj->index], (uart_stop_bit_count_t)--stop_bits); #endif } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static inline void uart_irq(uint32_t transmit_empty, uint32_t receive_full, uint32_t index) { if (serial_irq_ids[index] != 0) { if (transmit_empty) irq_handler(serial_irq_ids[index], TxIrq); if (receive_full) irq_handler(serial_irq_ids[index], RxIrq); } } void uart0_irq() { uart_irq(UART_HAL_IsTxDataRegEmpty(UART0_BASE), UART_HAL_IsRxDataRegFull(UART0_BASE), 0); if (UART_HAL_GetStatusFlag(UART0_BASE, kUartRxOverrun)) UART_HAL_ClearStatusFlag(UART0_BASE, kUartRxOverrun); } void uart1_irq() { uart_irq(UART_HAL_IsTxDataRegEmpty(UART1_BASE), UART_HAL_IsRxDataRegFull(UART1_BASE), 1); } void uart2_irq() { uart_irq(UART_HAL_IsTxDataRegEmpty(UART2_BASE), UART_HAL_IsRxDataRegFull(UART2_BASE), 2); } #if (UART_NUM > 3) void uart3_irq() { uart_irq(UART_HAL_IsTxDataRegEmpty(UART3_BASE), UART_HAL_IsRxDataRegFull(UART3_BASE), 3); } void uart4_irq() { uart_irq(UART_HAL_IsTxDataRegEmpty(UART4_BASE), UART_HAL_IsRxDataRegFull(UART4_BASE), 4); } #endif void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; switch (obj->index) { case 0: irq_n=UART0_RX_TX_IRQn; vector = (uint32_t)&uart0_irq; break; case 1: irq_n=UART1_RX_TX_IRQn; vector = (uint32_t)&uart1_irq; break; case 2: irq_n=UART2_RX_TX_IRQn; vector = (uint32_t)&uart2_irq; break; #if (UART_NUM > 3) case 3: irq_n=UART3_RX_TX_IRQn; vector = (uint32_t)&uart3_irq; break; case 4: irq_n=UART4_RX_TX_IRQn; vector = (uint32_t)&uart4_irq; break; #endif } uint32_t uart_addrs[] = UART_BASE_ADDRS; if (enable) { switch (irq) { case RxIrq: UART_HAL_SetRxDataRegFullIntCmd(uart_addrs[obj->index], true); break; case TxIrq: UART_HAL_SetTxDataRegEmptyIntCmd(uart_addrs[obj->index], true); break; } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq); switch (irq) { case RxIrq: UART_HAL_SetRxDataRegFullIntCmd(uart_addrs[obj->index], false); break; case TxIrq: UART_HAL_SetTxDataRegEmptyIntCmd(uart_addrs[obj->index], false); break; } switch (other_irq) { case RxIrq: all_disabled = UART_HAL_GetRxDataRegFullIntCmd(uart_addrs[obj->index]) == 0; break; case TxIrq: all_disabled = UART_HAL_GetTxDataRegEmptyIntCmd(uart_addrs[obj->index]) == 0; break; } if (all_disabled) NVIC_DisableIRQ(irq_n); } } int serial_getc(serial_t *obj) { while (!serial_readable(obj)); uint8_t data; uint32_t uart_addrs[] = UART_BASE_ADDRS; UART_HAL_Getchar(uart_addrs[obj->index], &data); return data; } void serial_putc(serial_t *obj, int c) { while (!serial_writable(obj)); uint32_t uart_addrs[] = UART_BASE_ADDRS; UART_HAL_Putchar(uart_addrs[obj->index], (uint8_t)c); } int serial_readable(serial_t *obj) { uint32_t uart_address[] = UART_BASE_ADDRS; if (UART_HAL_GetStatusFlag(uart_address[obj->index], kUartRxOverrun)) UART_HAL_ClearStatusFlag(uart_address[obj->index], kUartRxOverrun); return UART_HAL_IsRxDataRegFull(uart_address[obj->index]); } int serial_writable(serial_t *obj) { uint32_t uart_address[] = UART_BASE_ADDRS; if (UART_HAL_GetStatusFlag(uart_address[obj->index], kUartRxOverrun)) UART_HAL_ClearStatusFlag(uart_address[obj->index], kUartRxOverrun); return UART_HAL_IsTxDataRegEmpty(uart_address[obj->index]); } void serial_clear(serial_t *obj) { } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { uint32_t uart_address[] = UART_BASE_ADDRS; UART_HAL_SetBreakCharCmd(uart_address[obj->index], true); } void serial_break_clear(serial_t *obj) { uint32_t uart_address[] = UART_BASE_ADDRS; UART_HAL_SetBreakCharCmd(uart_address[obj->index], false); } #endif