/* mbed Microcontroller Library * Copyright (c) 2013 Nordic Semiconductor * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#include #include "mbed_assert.h" #include "spi_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" #define SPIS_MESSAGE_SIZE 1 volatile uint8_t m_tx_buf[SPIS_MESSAGE_SIZE] = {0}; volatile uint8_t m_rx_buf[SPIS_MESSAGE_SIZE] = {0}; // nRF51822's I2C_0 and SPI_0 (I2C_1, SPI_1 and SPIS1) share the same address. // They can't be used at the same time. So we use two global variable to track the usage. // See nRF51822 address information at nRF51822_PS v2.0.pdf - Table 15 Peripheral instance reference extern volatile i2c_spi_peripheral_t i2c0_spi0_peripheral; // from i2c_api.c extern volatile i2c_spi_peripheral_t i2c1_spi1_peripheral; void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { SPIName spi; if (ssel == NC && i2c0_spi0_peripheral.usage == I2C_SPI_PERIPHERAL_FOR_SPI && i2c0_spi0_peripheral.sda_mosi == (uint8_t)mosi && i2c0_spi0_peripheral.scl_miso == (uint8_t)miso && i2c0_spi0_peripheral.sclk == (uint8_t)sclk) { // The SPI with the same pins is already initialized spi = SPI_0; obj->peripheral = 0x1; } else if (ssel == NC && i2c1_spi1_peripheral.usage == I2C_SPI_PERIPHERAL_FOR_SPI && i2c1_spi1_peripheral.sda_mosi == (uint8_t)mosi && i2c1_spi1_peripheral.scl_miso == (uint8_t)miso && i2c1_spi1_peripheral.sclk == (uint8_t)sclk) { // The SPI with the same pins is already initialized spi = SPI_1; obj->peripheral = 0x2; } else if (i2c1_spi1_peripheral.usage == 0) { i2c1_spi1_peripheral.usage = I2C_SPI_PERIPHERAL_FOR_SPI; i2c1_spi1_peripheral.sda_mosi = (uint8_t)mosi; i2c1_spi1_peripheral.scl_miso = (uint8_t)miso; i2c1_spi1_peripheral.sclk = (uint8_t)sclk; spi = SPI_1; obj->peripheral = 0x2; } else if (i2c0_spi0_peripheral.usage == 0) { i2c0_spi0_peripheral.usage = I2C_SPI_PERIPHERAL_FOR_SPI; i2c0_spi0_peripheral.sda_mosi = (uint8_t)mosi; i2c0_spi0_peripheral.scl_miso = (uint8_t)miso; i2c0_spi0_peripheral.sclk = (uint8_t)sclk; spi = SPI_0; obj->peripheral = 0x1; } else { // No available peripheral error("No available SPI"); } if (ssel==NC) { obj->spi = (NRF_SPI_Type *)spi; obj->spis = (NRF_SPIS_Type *)NC; } else { obj->spi = (NRF_SPI_Type *)NC; obj->spis = (NRF_SPIS_Type *)spi; } // pin out the spi pins if (ssel != NC) { //slave obj->spis->POWER = 0; obj->spis->POWER = 1; NRF_GPIO->PIN_CNF[mosi] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); NRF_GPIO->PIN_CNF[miso] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); NRF_GPIO->PIN_CNF[sclk] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); NRF_GPIO->PIN_CNF[ssel] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); obj->spis->PSELMOSI = mosi; obj->spis->PSELMISO = miso; obj->spis->PSELSCK = sclk; obj->spis->PSELCSN = ssel; obj->spis->EVENTS_END = 0; obj->spis->EVENTS_ACQUIRED = 0; obj->spis->MAXRX = SPIS_MESSAGE_SIZE; obj->spis->MAXTX = SPIS_MESSAGE_SIZE; obj->spis->TXDPTR = (uint32_t)&m_tx_buf[0]; obj->spis->RXDPTR = (uint32_t)&m_rx_buf[0]; obj->spis->SHORTS = (SPIS_SHORTS_END_ACQUIRE_Enabled << SPIS_SHORTS_END_ACQUIRE_Pos); spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave } else { //master obj->spi->POWER = 0; obj->spi->POWER = 1; //NRF_GPIO->DIR |= (1<PIN_CNF[mosi] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos); obj->spi->PSELMOSI = mosi; NRF_GPIO->PIN_CNF[sclk] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Output << GPIO_PIN_CNF_DIR_Pos); obj->spi->PSELSCK = sclk; //NRF_GPIO->DIR &= ~(1<PIN_CNF[miso] = (GPIO_PIN_CNF_SENSE_Disabled << GPIO_PIN_CNF_SENSE_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 << GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_PULL_Disabled << GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_INPUT_Connect << GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_DIR_Input << GPIO_PIN_CNF_DIR_Pos); obj->spi->PSELMISO = miso; obj->spi->EVENTS_READY = 0U; spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master spi_frequency(obj, 1000000); } } void spi_free(spi_t *obj) { } static inline void spi_disable(spi_t *obj, int slave) { if (slave) { obj->spis->ENABLE = (SPIS_ENABLE_ENABLE_Disabled << SPIS_ENABLE_ENABLE_Pos); } else { obj->spi->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos); } } static inline void spi_enable(spi_t *obj, int slave) { if (slave) { obj->spis->ENABLE = (SPIS_ENABLE_ENABLE_Enabled << SPIS_ENABLE_ENABLE_Pos); } else { obj->spi->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos); } } void spi_format(spi_t *obj, int bits, int mode, int slave) { uint32_t config_mode = 0; spi_disable(obj, slave); if (bits != 8) { error("Only 8bits SPI supported"); } switch (mode) { case 0: config_mode = (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos); break; case 1: config_mode = (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos); break; case 2: config_mode = (SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos); break; case 3: config_mode = (SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos) | (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos); break; default: error("SPI format error"); break; } //default to msb first if (slave) { obj->spis->CONFIG = (config_mode | (SPI_CONFIG_ORDER_MsbFirst << SPI_CONFIG_ORDER_Pos)); } else { obj->spi->CONFIG = (config_mode | (SPI_CONFIG_ORDER_MsbFirst << SPI_CONFIG_ORDER_Pos)); } spi_enable(obj, slave); } void spi_frequency(spi_t *obj, int hz) { if ((int)obj->spi==NC) { return; } spi_disable(obj, 0); if (hz<250000) { //125Kbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_K125; } else if (hz<500000) { //250Kbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_K250; } else if (hz<1000000) { //500Kbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_K500; } else if (hz<2000000) { //1Mbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M1; } else if (hz<4000000) { //2Mbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M2; } else if (hz<8000000) { //4Mbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M4; } else { //8Mbps obj->spi->FREQUENCY = (uint32_t) SPI_FREQUENCY_FREQUENCY_M8; } spi_enable(obj, 0); } static inline int spi_readable(spi_t *obj) { return (obj->spi->EVENTS_READY == 1); } static inline int spi_writeable(spi_t *obj) { return (obj->spi->EVENTS_READY == 0); } static inline int spi_read(spi_t *obj) { while (!spi_readable(obj)) { } obj->spi->EVENTS_READY = 0; return (int)obj->spi->RXD; } int spi_master_write(spi_t *obj, int value) { while (!spi_writeable(obj)) { } obj->spi->TXD = (uint32_t)value; return spi_read(obj); } //static inline int spis_writeable(spi_t *obj) { // return (obj->spis->EVENTS_ACQUIRED==1); //} int spi_slave_receive(spi_t *obj) { return obj->spis->EVENTS_END; } int spi_slave_read(spi_t *obj) { return m_rx_buf[0]; } void spi_slave_write(spi_t *obj, int value) { m_tx_buf[0] = value & 0xFF; obj->spis->TASKS_RELEASE = 1; obj->spis->EVENTS_ACQUIRED = 0; obj->spis->EVENTS_END = 0; }