/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "spi_api.h" #if DEVICE_SPI #include #include "cmsis.h" #include "pinmap.h" #include "PeripheralPins.h" static SPI_HandleTypeDef SpiHandle; static void init_spi(spi_t *obj) { SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); __HAL_SPI_DISABLE(&SpiHandle); SpiHandle.Init.Mode = obj->mode; SpiHandle.Init.BaudRatePrescaler = obj->br_presc; SpiHandle.Init.Direction = SPI_DIRECTION_2LINES; SpiHandle.Init.CLKPhase = obj->cpha; SpiHandle.Init.CLKPolarity = obj->cpol; SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLED; SpiHandle.Init.CRCPolynomial = 7; SpiHandle.Init.DataSize = obj->bits; SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB; SpiHandle.Init.NSS = obj->nss; SpiHandle.Init.TIMode = SPI_TIMODE_DISABLED; HAL_SPI_Init(&SpiHandle); __HAL_SPI_ENABLE(&SpiHandle); } void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // Determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT(obj->spi != (SPIName)NC); // Enable SPI clock if (obj->spi == SPI_1) { __SPI1_CLK_ENABLE(); } if (obj->spi == SPI_2) { __SPI2_CLK_ENABLE(); } // Configure the SPI pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); // Save new values obj->bits = SPI_DATASIZE_8BIT; obj->cpol = SPI_POLARITY_LOW; obj->cpha = SPI_PHASE_1EDGE; obj->br_presc = SPI_BAUDRATEPRESCALER_256; obj->pin_miso = miso; obj->pin_mosi = mosi; obj->pin_sclk = sclk; obj->pin_ssel = ssel; if (ssel == NC) { // SW NSS Master mode obj->mode = SPI_MODE_MASTER; obj->nss = SPI_NSS_SOFT; } else { // Slave pinmap_pinout(ssel, PinMap_SPI_SSEL); obj->mode = SPI_MODE_SLAVE; obj->nss = SPI_NSS_HARD_INPUT; } init_spi(obj); } void spi_free(spi_t *obj) { // Reset SPI and disable clock if (obj->spi == SPI_1) { __SPI1_FORCE_RESET(); __SPI1_RELEASE_RESET(); __SPI1_CLK_DISABLE(); } if (obj->spi == SPI_2) { __SPI2_FORCE_RESET(); __SPI2_RELEASE_RESET(); __SPI2_CLK_DISABLE(); } // Configure GPIOs pin_function(obj->pin_miso, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin_mosi, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin_sclk, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin_ssel, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); } void spi_format(spi_t *obj, int bits, int mode, int slave) { // Save new values if (bits == 16) { obj->bits = SPI_DATASIZE_16BIT; } else { obj->bits = SPI_DATASIZE_8BIT; } switch (mode) { case 0: obj->cpol = SPI_POLARITY_LOW; obj->cpha = SPI_PHASE_1EDGE; break; case 1: obj->cpol = SPI_POLARITY_LOW; obj->cpha = SPI_PHASE_2EDGE; break; case 2: obj->cpol = SPI_POLARITY_HIGH; obj->cpha = SPI_PHASE_1EDGE; break; default: obj->cpol = SPI_POLARITY_HIGH; obj->cpha = SPI_PHASE_2EDGE; break; } if (slave == 0) { obj->mode = SPI_MODE_MASTER; obj->nss = SPI_NSS_SOFT; } else { obj->mode = SPI_MODE_SLAVE; obj->nss = SPI_NSS_HARD_INPUT; } init_spi(obj); } void spi_frequency(spi_t *obj, int hz) { if (obj->spi == SPI_1) { // Values depend of PCLK2: 64 MHz if HSI is used, 72 MHz if HSE is used if (hz < 500000) { obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 250 kHz - 281 kHz } else if ((hz >= 500000) && (hz < 1000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 500 kHz - 563 kHz } else if ((hz >= 1000000) && (hz < 2000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 1 MHz - 1.13 MHz } else if ((hz >= 2000000) && (hz < 4000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 2 MHz - 2.25 MHz } else if ((hz >= 4000000) && (hz < 8000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 4 MHz - 4.5 MHz } else if ((hz >= 8000000) && (hz < 16000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 8 MHz - 9 MHz } else if ((hz >= 16000000) && (hz < 32000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 16 MHz - 18 MHz } else { // >= 32000000 obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 32 MHz - 36 MHz } } if (obj->spi == SPI_2) { // Values depend of PCLK1: 32 MHz if HSI is used, 36 MHz if HSE is used if (hz < 250000) { obj->br_presc = SPI_BAUDRATEPRESCALER_256; // 125 kHz - 141 kHz } else if ((hz >= 250000) && (hz < 500000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_128; // 250 kHz - 281 kHz } else if ((hz >= 500000) && (hz < 1000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_64; // 500 kHz - 563 kHz } else if ((hz >= 1000000) && (hz < 2000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_32; // 1 MHz - 1.13 MHz } else if ((hz >= 2000000) && (hz < 4000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_16; // 2 MHz - 2.25 MHz } else if ((hz >= 4000000) && (hz < 8000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_8; // 4 MHz - 4.5 MHz } else if ((hz >= 8000000) && (hz < 16000000)) { obj->br_presc = SPI_BAUDRATEPRESCALER_4; // 8 MHz - 9 MHz } else { // >= 16000000 obj->br_presc = SPI_BAUDRATEPRESCALER_2; // 16 MHz - 18 MHz } } init_spi(obj); } static inline int ssp_readable(spi_t *obj) { int status; SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); // Check if data is received status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_RXNE) != RESET) ? 1 : 0); return status; } static inline int ssp_writeable(spi_t *obj) { int status; SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); // Check if data is transmitted status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_TXE) != RESET) ? 1 : 0); return status; } static inline void ssp_write(spi_t *obj, int value) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_writeable(obj)); if (obj->bits == SPI_DATASIZE_8BIT) { // Force 8-bit access to the data register uint8_t *p_spi_dr = 0; p_spi_dr = (uint8_t *) & (spi->DR); *p_spi_dr = (uint8_t)value; } else { // SPI_DATASIZE_16BIT spi->DR = (uint16_t)value; } } static inline int ssp_read(spi_t *obj) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_readable(obj)); if (obj->bits == SPI_DATASIZE_8BIT) { // Force 8-bit access to the data register uint8_t *p_spi_dr = 0; p_spi_dr = (uint8_t *) & (spi->DR); return (int)(*p_spi_dr); } else { return (int)spi->DR; } } static inline int ssp_busy(spi_t *obj) { int status; SpiHandle.Instance = (SPI_TypeDef *)(obj->spi); status = ((__HAL_SPI_GET_FLAG(&SpiHandle, SPI_FLAG_BSY) != RESET) ? 1 : 0); return status; } int spi_master_write(spi_t *obj, int value) { ssp_write(obj, value); return ssp_read(obj); } int spi_slave_receive(spi_t *obj) { return ((ssp_readable(obj) && !ssp_busy(obj)) ? 1 : 0); }; int spi_slave_read(spi_t *obj) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_readable(obj)); if (obj->bits == SPI_DATASIZE_8BIT) { // Force 8-bit access to the data register uint8_t *p_spi_dr = 0; p_spi_dr = (uint8_t *) & (spi->DR); return (int)(*p_spi_dr); } else { return (int)spi->DR; } } void spi_slave_write(spi_t *obj, int value) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_writeable(obj)); if (obj->bits == SPI_DATASIZE_8BIT) { // Force 8-bit access to the data register uint8_t *p_spi_dr = 0; p_spi_dr = (uint8_t *) & (spi->DR); *p_spi_dr = (uint8_t)value; } else { // SPI_DATASIZE_16BIT spi->DR = (uint16_t)value; } } int spi_busy(spi_t *obj) { return ssp_busy(obj); } #endif