/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "serial_api.h" #include "cmsis.h" #include "pinmap.h" #include static const PinMap PinMap_UART_TX[] = { {PA_2, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PA_9, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PA_14, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_3, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_6, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_9, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PC_4, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PC_10, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {NC, NC, 0} }; static const PinMap PinMap_UART_RX[] = { {PA_3, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PA_10, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PA_15, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_4, UART_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_7, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_8, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PB_11, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PC_5, UART_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {PC_11, UART_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_7)}, {NC, NC, 0} }; #define UART_NUM (2) static uint32_t serial_irq_ids[UART_NUM] = {0}; static uart_irq_handler irq_handler; int stdio_uart_inited = 0; serial_t stdio_uart; static void init_usart(serial_t *obj) { USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); USART_InitTypeDef USART_InitStructure; USART_Cmd(usart, DISABLE); USART_InitStructure.USART_BaudRate = obj->baudrate; USART_InitStructure.USART_WordLength = obj->databits; USART_InitStructure.USART_StopBits = obj->stopbits; USART_InitStructure.USART_Parity = obj->parity; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(usart, &USART_InitStructure); USART_Cmd(usart, ENABLE); } void serial_init(serial_t *obj, PinName tx, PinName rx) { // Determine the UART to use UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); // Get the peripheral name from the pin and assign it to the object obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT(obj->uart != (UARTName)NC); // Enable USART clock if (obj->uart == UART_1) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); } if (obj->uart == UART_2) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); } if (obj->uart == UART_3) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); } // Configure the UART pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } // Configure UART obj->baudrate = 9600; obj->databits = USART_WordLength_8b; obj->stopbits = USART_StopBits_1; obj->parity = USART_Parity_No; init_usart(obj); // The index is used by irq if (obj->uart == UART_1) obj->index = 0; if (obj->uart == UART_2) obj->index = 1; if (obj->uart == UART_3) obj->index = 2; // For stdio management if (obj->uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { serial_irq_ids[obj->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { obj->baudrate = baudrate; init_usart(obj); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { if (data_bits == 8) { obj->databits = USART_WordLength_8b; } else { obj->databits = USART_WordLength_9b; } switch (parity) { case ParityOdd: case ParityForced0: obj->parity = USART_Parity_Odd; break; case ParityEven: case ParityForced1: obj->parity = USART_Parity_Even; break; default: // ParityNone obj->parity = USART_Parity_No; break; } if (stop_bits == 2) { obj->stopbits = USART_StopBits_2; } else { obj->stopbits = USART_StopBits_1; } init_usart(obj); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ // not api static void uart_irq(USART_TypeDef* usart, int id) { if (serial_irq_ids[id] != 0) { if (USART_GetITStatus(usart, USART_IT_TC) != RESET) { irq_handler(serial_irq_ids[id], TxIrq); USART_ClearITPendingBit(usart, USART_IT_TC); } if (USART_GetITStatus(usart, USART_IT_RXNE) != RESET) { irq_handler(serial_irq_ids[id], RxIrq); USART_ClearITPendingBit(usart, USART_IT_RXNE); } } } static void uart1_irq(void) { uart_irq((USART_TypeDef*)UART_1, 0); } static void uart2_irq(void) { uart_irq((USART_TypeDef*)UART_2, 1); } static void uart3_irq(void) { uart_irq((USART_TypeDef*)UART_3, 2); } void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); if (obj->uart == UART_1) { irq_n = USART1_IRQn; vector = (uint32_t)&uart1_irq; } if (obj->uart == UART_2) { irq_n = USART2_IRQn; vector = (uint32_t)&uart2_irq; } if (obj->uart == UART_3) { irq_n = USART3_IRQn; vector = (uint32_t)&uart3_irq; } if (enable) { if (irq == RxIrq) { USART_ITConfig(usart, USART_IT_RXNE, ENABLE); } else { // TxIrq USART_ITConfig(usart, USART_IT_TC, ENABLE); } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; if (irq == RxIrq) { USART_ITConfig(usart, USART_IT_RXNE, DISABLE); // Check if TxIrq is disabled too if ((usart->CR1 & USART_CR1_TXEIE) == 0) all_disabled = 1; } else { // TxIrq USART_ITConfig(usart, USART_IT_TXE, DISABLE); // Check if RxIrq is disabled too if ((usart->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1; } if (all_disabled) NVIC_DisableIRQ(irq_n); } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); while (!serial_readable(obj)); return (int)(USART_ReceiveData(usart)); } void serial_putc(serial_t *obj, int c) { USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); while (!serial_writable(obj)); USART_SendData(usart, (uint16_t)c); } int serial_readable(serial_t *obj) { int status; USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); // Check if data is received status = ((USART_GetFlagStatus(usart, USART_FLAG_RXNE) != RESET) ? 1 : 0); return status; } int serial_writable(serial_t *obj) { int status; USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); // Check if data is transmitted status = ((USART_GetFlagStatus(usart, USART_FLAG_TXE) != RESET) ? 1 : 0); return status; } void serial_clear(serial_t *obj) { USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); USART_ClearFlag(usart, USART_FLAG_TXE); USART_ClearFlag(usart, USART_FLAG_RXNE); } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); USART_RequestCmd(usart, USART_Request_SBKRQ, ENABLE); } void serial_break_clear(serial_t *obj) { USART_TypeDef *usart = (USART_TypeDef *)(obj->uart); USART_RequestCmd(usart, USART_Request_SBKRQ, DISABLE); USART_ClearFlag(usart, USART_FLAG_SBK); }