/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "pwmout_api.h" #include "cmsis.h" #include "pinmap.h" #include "mbed_error.h" // Ported from LPC824 and adapted. #if DEVICE_PWMOUT #define PWM_IRQn SCT_IRQn // Bit flags for used SCT Outputs static unsigned char sct_used = 0; static int sct_inited = 0; // Find available output channel // Max number of PWM outputs is 4 on LPC812 static int get_available_sct() { int i; // Find available output channel 0..3 // Also need one Match register per channel for (i = 0; i < CONFIG_SCT_nOU; i++) { // for (i = 0; i < 4; i++) { if ((sct_used & (1 << i)) == 0) return i; } return -1; } // Any Port pin may be used for PWM. // Max number of PWM outputs is 4 void pwmout_init(pwmout_t* obj, PinName pin) { MBED_ASSERT(pin != (uint32_t)NC); int sct_n = get_available_sct(); if (sct_n == -1) { error("No available SCT Output"); } sct_used |= (1 << sct_n); obj->pwm = (LPC_SCT_TypeDef*)LPC_SCT; obj->pwm_ch = sct_n; LPC_SCT_TypeDef* pwm = obj->pwm; // Init SCT on first use if (! sct_inited) { sct_inited = 1; // Enable the SCT clock LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 8); // Clear peripheral reset the SCT: LPC_SYSCON->PRESETCTRL |= (1 << 8); // Two 16-bit counters, autolimit (ie reset on Match_0) //pwm->CONFIG &= ~(0x1); //pwm->CONFIG |= (1 << 17); pwm->CONFIG |= ((0x3 << 17) | 0x01); // halt and clear the counter pwm->CTRL_U |= (1 << 2) | (1 << 3); // System Clock (30 Mhz) -> Prescaler -> us_ticker (1 MHz) pwm->CTRL_U &= ~(0x7F << 5); pwm->CTRL_U |= (((SystemCoreClock/1000000 - 1) & 0x7F) << 5); pwm->EVENT[0].CTRL = (1 << 12) | 0; // Event_0 on Match_0 pwm->EVENT[0].STATE = 0xFFFFFFFF; // All states // unhalt the counter: // - clearing bit 2 of the CTRL register pwm->CTRL_U &= ~(1 << 2); // Not using IRQs //NVIC_SetVector(PWM_IRQn, (uint32_t)pwm_irq_handler); //NVIC_EnableIRQ(PWM_IRQn); } // LPC81x has only one SCT and 4 Outputs // LPC82x has only one SCT and 6 Outputs // LPC1549 has 4 SCTs and 16 Outputs switch(sct_n) { case 0: // SCTx_OUT0 LPC_SWM->PINASSIGN[6] &= ~0xFF000000; LPC_SWM->PINASSIGN[6] |= (pin << 24); break; case 1: // SCTx_OUT1 LPC_SWM->PINASSIGN[7] &= ~0x000000FF; LPC_SWM->PINASSIGN[7] |= (pin); break; case 2: // SCTx_OUT2 LPC_SWM->PINASSIGN[7] &= ~0x0000FF00; LPC_SWM->PINASSIGN[7] |= (pin << 8); break; case 3: // SCTx_OUT3 LPC_SWM->PINASSIGN[7] &= ~0x00FF0000; LPC_SWM->PINASSIGN[7] |= (pin << 16); break; default: break; } pwm->EVENT[sct_n + 1].CTRL = (1 << 12) | (sct_n + 1); // Event_n on Match_n pwm->EVENT[sct_n + 1].STATE = 0xFFFFFFFF; // All states pwm->OUT[sct_n].SET = (1 << 0); // All PWM channels are SET on Event_0 pwm->OUT[sct_n].CLR = (1 << (sct_n + 1)); // PWM ch is CLRed on Event_(ch+1) // default to 20ms: standard for servos, and fine for e.g. brightness control pwmout_period_ms(obj, 20); // 20ms period pwmout_write (obj, 0.0); // 0ms pulsewidth, dutycycle 0 } void pwmout_free(pwmout_t* obj) { // PWM channel is now free sct_used &= ~(1 << obj->pwm_ch); // Disable the SCT clock when all channels free if (sct_used == 0) { LPC_SYSCON->SYSAHBCLKCTRL &= ~(1 << 8); sct_inited = 0; }; } // Set new dutycycle (0.0 .. 1.0) void pwmout_write(pwmout_t* obj, float value) { //value is new dutycycle if (value < 0.0f) { value = 0.0; } else if (value > 1.0f) { value = 1.0; } // Match_0 is PWM period. Compute new endtime of pulse for current channel uint32_t t_off = (uint32_t)((float)(obj->pwm->MATCHREL[0].U) * value); obj->pwm->MATCHREL[(obj->pwm_ch) + 1].U = t_off; // New endtime } // Get dutycycle (0.0 .. 1.0) float pwmout_read(pwmout_t* obj) { uint32_t t_period = obj->pwm->MATCHREL[0].U; //Sanity check if (t_period == 0) { return 0.0; }; uint32_t t_off = obj->pwm->MATCHREL[(obj->pwm_ch) + 1].U; float v = (float)t_off/(float)t_period; //Sanity check return (v > 1.0f) ? (1.0f) : (v); } // Set the PWM period, keeping the duty cycle the same (for this channel only!). void pwmout_period(pwmout_t* obj, float seconds){ pwmout_period_us(obj, seconds * 1000000.0f); } // Set the PWM period, keeping the duty cycle the same (for this channel only!). void pwmout_period_ms(pwmout_t* obj, int ms) { pwmout_period_us(obj, ms * 1000); } // Set the PWM period, keeping the duty cycle the same (for this channel only!). void pwmout_period_us(pwmout_t* obj, int us) { uint32_t t_period = obj->pwm->MATCHREL[0].U; // Current PWM period obj->pwm->MATCHREL[0].U = (uint32_t)us; // New PWM period //Keep the dutycycle for the new PWM period //Should really do this for all active channels!! //This problem exists in all mbed libs. //Sanity check if (t_period == 0) { return; // obj->pwm->MATCHREL[(obj->pwm_ch) + 1].L = 0; // New endtime for this channel } else { uint32_t t_off = obj->pwm->MATCHREL[(obj->pwm_ch) + 1].U; float v = (float)t_off/(float)t_period; obj->pwm->MATCHREL[(obj->pwm_ch) + 1].U = (uint32_t)((float)us * (float)v); // New endtime for this channel } } //Set pulsewidth void pwmout_pulsewidth(pwmout_t* obj, float seconds) { pwmout_pulsewidth_us(obj, seconds * 1000000.0f); } //Set pulsewidth void pwmout_pulsewidth_ms(pwmout_t* obj, int ms){ pwmout_pulsewidth_us(obj, ms * 1000); } //Set pulsewidth void pwmout_pulsewidth_us(pwmout_t* obj, int us) { //Should add Sanity check to make sure pulsewidth < period! obj->pwm->MATCHREL[(obj->pwm_ch) + 1].U = (uint32_t)us; // New endtime for this channel } #endif