/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_cmplx_dot_prod_q15.c * * Description: Processing function for the Q15 Complex Dot product * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup cmplx_dot_prod * @{ */ /** * @brief Q15 complex dot product * @param *pSrcA points to the first input vector * @param *pSrcB points to the second input vector * @param numSamples number of complex samples in each vector * @param *realResult real part of the result returned here * @param *imagResult imaginary part of the result returned here * @return none. * * Scaling and Overflow Behavior: * \par * The function is implemented using an internal 64-bit accumulator. * The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result. * These are accumulated in a 64-bit accumulator with 34.30 precision. * As a final step, the accumulators are converted to 8.24 format. * The return results realResult and imagResult are in 8.24 format. */ void arm_cmplx_dot_prod_q15( q15_t * pSrcA, q15_t * pSrcB, uint32_t numSamples, q31_t * realResult, q31_t * imagResult) { q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counter */ /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */ real_sum += ((q31_t) * pSrcA++ * *pSrcB++); /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */ imag_sum += ((q31_t) * pSrcA++ * *pSrcB++); real_sum += ((q31_t) * pSrcA++ * *pSrcB++); imag_sum += ((q31_t) * pSrcA++ * *pSrcB++); real_sum += ((q31_t) * pSrcA++ * *pSrcB++); imag_sum += ((q31_t) * pSrcA++ * *pSrcB++); real_sum += ((q31_t) * pSrcA++ * *pSrcB++); imag_sum += ((q31_t) * pSrcA++ * *pSrcB++); /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; while(blkCnt > 0u) { /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */ real_sum += ((q31_t) * pSrcA++ * *pSrcB++); /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */ imag_sum += ((q31_t) * pSrcA++ * *pSrcB++); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ while(numSamples > 0u) { /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */ real_sum += ((q31_t) * pSrcA++ * *pSrcB++); /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */ imag_sum += ((q31_t) * pSrcA++ * *pSrcB++); /* Decrement the loop counter */ numSamples--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ /* Store the real and imaginary results in 8.24 format */ /* Convert real data in 34.30 to 8.24 by 6 right shifts */ *realResult = (q31_t) (real_sum) >> 6; /* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */ *imagResult = (q31_t) (imag_sum) >> 6; } /** * @} end of cmplx_dot_prod group */