/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_conv_partial_fast_q31.c * * Description: Fast Q31 Partial convolution. * * Target Processor: Cortex-M4/Cortex-M3 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup PartialConv * @{ */ /** * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4. * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. * @param[in] firstIndex is the first output sample to start with. * @param[in] numPoints is the number of output points to be computed. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. * * \par * See arm_conv_partial_q31() for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. */ arm_status arm_conv_partial_fast_q31( q31_t * pSrcA, uint32_t srcALen, q31_t * pSrcB, uint32_t srcBLen, q31_t * pDst, uint32_t firstIndex, uint32_t numPoints) { q31_t *pIn1; /* inputA pointer */ q31_t *pIn2; /* inputB pointer */ q31_t *pOut = pDst; /* output pointer */ q31_t *px; /* Intermediate inputA pointer */ q31_t *py; /* Intermediate inputB pointer */ q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ q31_t x0, x1, x2, x3, c0; uint32_t j, k, count, check, blkCnt; int32_t blockSize1, blockSize2, blockSize3; /* loop counters */ arm_status status; /* status of Partial convolution */ /* Check for range of output samples to be calculated */ if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) { /* Set status as ARM_MATH_ARGUMENT_ERROR */ status = ARM_MATH_ARGUMENT_ERROR; } else { /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ if(srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = pSrcA; /* Initialization of inputB pointer */ pIn2 = pSrcB; } else { /* Initialization of inputA pointer */ pIn1 = pSrcB; /* Initialization of inputB pointer */ pIn2 = pSrcA; /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; } /* Conditions to check which loopCounter holds * the first and last indices of the output samples to be calculated. */ check = firstIndex + numPoints; blockSize3 = ((int32_t) check - (int32_t) srcALen); blockSize3 = (blockSize3 > 0) ? blockSize3 : 0; blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex); blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 : (int32_t) numPoints) : 0; blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + (int32_t) firstIndex); blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ /* The function is internally * divided into three stages according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first stage of the * algorithm, the multiplications increase by one for every iteration. * In the second stage of the algorithm, srcBLen number of multiplications are done. * In the third stage of the algorithm, the multiplications decrease by one * for every iteration. */ /* Set the output pointer to point to the firstIndex * of the output sample to be calculated. */ pOut = pDst + firstIndex; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[0] * sum = x[0] * y[1] + x[1] * y[0] * .... * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed. Since the partial convolution starts from firstIndex Number of Macs to be performed is firstIndex + 1 */ count = 1u + firstIndex; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc2 = pIn2 + firstIndex; py = pSrc2; /* ------------------------ * Stage1 process * ----------------------*/ /* The first loop starts here */ while(blockSize1 > 0) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* x[0] * y[srcBLen - 1] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* x[1] * y[srcBLen - 2] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* x[2] * y[srcBLen - 3] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* x[3] * y[srcBLen - 4] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Update the inputA and inputB pointers for next MAC calculation */ py = ++pSrc2; px = pIn1; /* Increment the MAC count */ count++; /* Decrement the loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] * .... * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] */ /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1u); py = pSrc2; /* count is index by which the pointer pIn1 to be incremented */ count = 0u; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4 */ if(srcBLen >= 4u) { /* Loop unroll over blockSize2 */ blkCnt = ((uint32_t) blockSize2 >> 2u); while(blkCnt > 0u) { /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* read x[0], x[1], x[2] samples */ x0 = *(px++); x1 = *(px++); x2 = *(px++); /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ do { /* Read y[srcBLen - 1] sample */ c0 = *(py--); /* Read x[3] sample */ x3 = *(px++); /* Perform the multiply-accumulate */ /* acc0 += x[0] * y[srcBLen - 1] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc1 += x[1] * y[srcBLen - 1] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc2 += x[2] * y[srcBLen - 1] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc3 += x[3] * y[srcBLen - 1] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); /* Read y[srcBLen - 2] sample */ c0 = *(py--); /* Read x[4] sample */ x0 = *(px++); /* Perform the multiply-accumulate */ /* acc0 += x[1] * y[srcBLen - 2] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc1 += x[2] * y[srcBLen - 2] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc2 += x[3] * y[srcBLen - 2] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32); /* acc3 += x[4] * y[srcBLen - 2] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32); /* Read y[srcBLen - 3] sample */ c0 = *(py--); /* Read x[5] sample */ x1 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[2] * y[srcBLen - 3] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc1 += x[3] * y[srcBLen - 2] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32); /* acc2 += x[4] * y[srcBLen - 2] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc3 += x[5] * y[srcBLen - 2] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32); /* Read y[srcBLen - 4] sample */ c0 = *(py--); /* Read x[6] sample */ x2 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[3] * y[srcBLen - 4] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32); /* acc1 += x[4] * y[srcBLen - 4] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc2 += x[5] * y[srcBLen - 4] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc3 += x[6] * y[srcBLen - 4] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32); } while(--k); /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4u; while(k > 0u) { /* Read y[srcBLen - 5] sample */ c0 = *(py--); /* Read x[7] sample */ x3 = *(px++); /* Perform the multiply-accumulates */ /* acc0 += x[4] * y[srcBLen - 5] */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); /* acc1 += x[5] * y[srcBLen - 5] */ acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* acc2 += x[6] * y[srcBLen - 5] */ acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); /* acc3 += x[7] * y[srcBLen - 5] */ acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); /* Reuse the present samples for the next MAC */ x0 = x1; x1 = x2; x2 = x3; /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = (q31_t) (acc0 << 1); *pOut++ = (q31_t) (acc1 << 1); *pOut++ = (q31_t) (acc2 << 1); *pOut++ = (q31_t) (acc3 << 1); /* Increment the pointer pIn1 index, count by 4 */ count += 4u; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = (uint32_t) blockSize2 % 0x4u; while(blkCnt > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* Perform the multiply-accumulates */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4u; while(k > 0u) { /* Perform the multiply-accumulate */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = (uint32_t) blockSize2; while(blkCnt > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* srcBLen number of MACS should be performed */ k = srcBLen; while(k > 0u) { /* Perform the multiply-accumulate */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pSrc2; /* Decrement the loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] * .... * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] * sum += x[srcALen-1] * y[srcBLen-1] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = srcBLen - 1u; /* Working pointer of inputA */ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); px = pSrc1; /* Working pointer of inputB */ pSrc2 = pIn2 + (srcBLen - 1u); py = pSrc2; /* ------------------- * Stage3 process * ------------------*/ while(blockSize3 > 0) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ /* sum += x[srcALen-1] * y[srcBLen-1] */ sum = (q31_t) ((((q63_t) sum << 32) + ((q63_t) * px++ * (*py--))) >> 32); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut++ = sum << 1; /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pSrc2; /* Decrement the MAC count */ count--; /* Decrement the loop counter */ blockSize3--; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of PartialConv group */