/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_correlate_fast_q15.c * * Description: Fast Q15 Correlation. * * Target Processor: Cortex-M4/Cortex-M3 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup Corr * @{ */ /** * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. * @param[in] *pSrcA points to the first input sequence. * @param[in] srcALen length of the first input sequence. * @param[in] *pSrcB points to the second input sequence. * @param[in] srcBLen length of the second input sequence. * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1. * @return none. * * Scaling and Overflow Behavior: * * \par * This fast version uses a 32-bit accumulator with 2.30 format. * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit. * There is no saturation on intermediate additions. * Thus, if the accumulator overflows it wraps around and distorts the result. * The input signals should be scaled down to avoid intermediate overflows. * Scale down one of the inputs by 1/min(srcALen, srcBLen) to avoid overflow since a * maximum of min(srcALen, srcBLen) number of additions is carried internally. * The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result. * * \par * See arm_correlate_q15() for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion. */ void arm_correlate_fast_q15( q15_t * pSrcA, uint32_t srcALen, q15_t * pSrcB, uint32_t srcBLen, q15_t * pDst) { #ifndef UNALIGNED_SUPPORT_DISABLE q15_t *pIn1; /* inputA pointer */ q15_t *pIn2; /* inputB pointer */ q15_t *pOut = pDst; /* output pointer */ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ q15_t *px; /* Intermediate inputA pointer */ q15_t *py; /* Intermediate inputB pointer */ q15_t *pSrc1; /* Intermediate pointers */ q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */ uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */ int32_t inc = 1; /* Destination address modifier */ /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ /* But CORR(x, y) is reverse of CORR(y, x) */ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ /* and the destination pointer modifier, inc is set to -1 */ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */ /* But to improve the performance, * we include zeroes in the output instead of zero padding either of the the inputs*/ /* If srcALen > srcBLen, * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */ /* If srcALen < srcBLen, * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */ if(srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = (pSrcA); /* Initialization of inputB pointer */ pIn2 = (pSrcB); /* Number of output samples is calculated */ outBlockSize = (2u * srcALen) - 1u; /* When srcALen > srcBLen, zero padding is done to srcB * to make their lengths equal. * Instead, (outBlockSize - (srcALen + srcBLen - 1)) * number of output samples are made zero */ j = outBlockSize - (srcALen + (srcBLen - 1u)); /* Updating the pointer position to non zero value */ pOut += j; } else { /* Initialization of inputA pointer */ pIn1 = (pSrcB); /* Initialization of inputB pointer */ pIn2 = (pSrcA); /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; /* CORR(x, y) = Reverse order(CORR(y, x)) */ /* Hence set the destination pointer to point to the last output sample */ pOut = pDst + ((srcALen + srcBLen) - 2u); /* Destination address modifier is set to -1 */ inc = -1; } /* The function is internally * divided into three parts according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first part of the * algorithm, the multiplications increase by one for every iteration. * In the second part of the algorithm, srcBLen number of multiplications are done. * In the third part of the algorithm, the multiplications decrease by one * for every iteration.*/ /* The algorithm is implemented in three stages. * The loop counters of each stage is initiated here. */ blockSize1 = srcBLen - 1u; blockSize2 = srcALen - (srcBLen - 1u); blockSize3 = blockSize1; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[srcBlen - 1] * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1] * .... * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = 1u; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc1 = pIn2 + (srcBLen - 1u); py = pSrc1; /* ------------------------ * Stage1 process * ----------------------*/ /* The first loop starts here */ while(blockSize1 > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum); /* x[3] * y[srcBLen - 1] , x[2] * y[srcBLen - 2] */ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ /* x[0] * y[srcBLen - 1] */ sum = __SMLAD(*px++, *py++, sum); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Update the inputA and inputB pointers for next MAC calculation */ py = pSrc1 - count; px = pIn1; /* Increment the MAC count */ count++; /* Decrement the loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1] * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1] * .... * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] */ /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ py = pIn2; /* count is index by which the pointer pIn1 to be incremented */ count = 0u; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */ if(srcBLen >= 4u) { /* Loop unroll over blockSize2, by 4 */ blkCnt = blockSize2 >> 2u; while(blkCnt > 0u) { /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* read x[0], x[1] samples */ x0 = *__SIMD32(px); /* read x[1], x[2] samples */ x1 = _SIMD32_OFFSET(px + 1); px += 2u; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ do { /* Read the first two inputB samples using SIMD: * y[0] and y[1] */ c0 = *__SIMD32(py)++; /* acc0 += x[0] * y[0] + x[1] * y[1] */ acc0 = __SMLAD(x0, c0, acc0); /* acc1 += x[1] * y[0] + x[2] * y[1] */ acc1 = __SMLAD(x1, c0, acc1); /* Read x[2], x[3] */ x2 = *__SIMD32(px); /* Read x[3], x[4] */ x3 = _SIMD32_OFFSET(px + 1); /* acc2 += x[2] * y[0] + x[3] * y[1] */ acc2 = __SMLAD(x2, c0, acc2); /* acc3 += x[3] * y[0] + x[4] * y[1] */ acc3 = __SMLAD(x3, c0, acc3); /* Read y[2] and y[3] */ c0 = *__SIMD32(py)++; /* acc0 += x[2] * y[2] + x[3] * y[3] */ acc0 = __SMLAD(x2, c0, acc0); /* acc1 += x[3] * y[2] + x[4] * y[3] */ acc1 = __SMLAD(x3, c0, acc1); /* Read x[4], x[5] */ x0 = _SIMD32_OFFSET(px + 2); /* Read x[5], x[6] */ x1 = _SIMD32_OFFSET(px + 3); px += 4u; /* acc2 += x[4] * y[2] + x[5] * y[3] */ acc2 = __SMLAD(x0, c0, acc2); /* acc3 += x[5] * y[2] + x[6] * y[3] */ acc3 = __SMLAD(x1, c0, acc3); } while(--k); /* For the next MAC operations, SIMD is not used * So, the 16 bit pointer if inputB, py is updated */ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4u; if(k == 1u) { /* Read y[4] */ c0 = *py; #ifdef ARM_MATH_BIG_ENDIAN c0 = c0 << 16u; #else c0 = c0 & 0x0000FFFF; #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ /* Read x[7] */ x3 = *__SIMD32(px); px++; /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLADX(x1, c0, acc2); acc3 = __SMLADX(x3, c0, acc3); } if(k == 2u) { /* Read y[4], y[5] */ c0 = *__SIMD32(py); /* Read x[7], x[8] */ x3 = *__SIMD32(px); /* Read x[9] */ x2 = _SIMD32_OFFSET(px + 1); px += 2u; /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLAD(x3, c0, acc2); acc3 = __SMLAD(x2, c0, acc3); } if(k == 3u) { /* Read y[4], y[5] */ c0 = *__SIMD32(py)++; /* Read x[7], x[8] */ x3 = *__SIMD32(px); /* Read x[9] */ x2 = _SIMD32_OFFSET(px + 1); /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLAD(x3, c0, acc2); acc3 = __SMLAD(x2, c0, acc3); c0 = (*py); /* Read y[6] */ #ifdef ARM_MATH_BIG_ENDIAN c0 = c0 << 16u; #else c0 = c0 & 0x0000FFFF; #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ /* Read x[10] */ x3 = _SIMD32_OFFSET(px + 2); px += 3u; /* Perform the multiply-accumulates */ acc0 = __SMLADX(x1, c0, acc0); acc1 = __SMLAD(x2, c0, acc1); acc2 = __SMLADX(x2, c0, acc2); acc3 = __SMLADX(x3, c0, acc3); } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (acc0 >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; *pOut = (q15_t) (acc1 >> 15); pOut += inc; *pOut = (q15_t) (acc2 >> 15); pOut += inc; *pOut = (q15_t) (acc3 >> 15); pOut += inc; /* Increment the pointer pIn1 index, count by 1 */ count += 4u; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pIn2; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize2 % 0x4u; while(blkCnt > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* Perform the multiply-accumulates */ sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Increment the pointer pIn1 index, count by 1 */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pIn2; /* Decrement the loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = blockSize2; while(blkCnt > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Loop over srcBLen */ k = srcBLen; while(k > 0u) { /* Perform the multiply-accumulate */ sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pIn2; /* Decrement the loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] * .... * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1] * sum += x[srcALen-1] * y[0] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = srcBLen - 1u; /* Working pointer of inputA */ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); px = pSrc1; /* Working pointer of inputB */ py = pIn2; /* ------------------- * Stage3 process * ------------------*/ while(blockSize3 > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* Perform the multiply-accumulates */ /* sum += x[srcALen - srcBLen + 4] * y[3] , sum += x[srcALen - srcBLen + 3] * y[2] */ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum); /* sum += x[srcALen - srcBLen + 2] * y[1] , sum += x[srcALen - srcBLen + 1] * y[0] */ sum = __SMLAD(*__SIMD32(px)++, *__SIMD32(py)++, sum); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ sum = __SMLAD(*px++, *py++, sum); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pIn2; /* Decrement the MAC count */ count--; /* Decrement the loop counter */ blockSize3--; } #else q15_t *pIn1; /* inputA pointer */ q15_t *pIn2; /* inputB pointer */ q15_t *pOut = pDst; /* output pointer */ q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ q15_t *px; /* Intermediate inputA pointer */ q15_t *py; /* Intermediate inputB pointer */ q15_t *pSrc1; /* Intermediate pointers */ q31_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */ uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */ int32_t inc = 1; /* Destination address modifier */ q15_t a, b; /* The algorithm implementation is based on the lengths of the inputs. */ /* srcB is always made to slide across srcA. */ /* So srcBLen is always considered as shorter or equal to srcALen */ /* But CORR(x, y) is reverse of CORR(y, x) */ /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ /* and the destination pointer modifier, inc is set to -1 */ /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */ /* But to improve the performance, * we include zeroes in the output instead of zero padding either of the the inputs*/ /* If srcALen > srcBLen, * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */ /* If srcALen < srcBLen, * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */ if(srcALen >= srcBLen) { /* Initialization of inputA pointer */ pIn1 = (pSrcA); /* Initialization of inputB pointer */ pIn2 = (pSrcB); /* Number of output samples is calculated */ outBlockSize = (2u * srcALen) - 1u; /* When srcALen > srcBLen, zero padding is done to srcB * to make their lengths equal. * Instead, (outBlockSize - (srcALen + srcBLen - 1)) * number of output samples are made zero */ j = outBlockSize - (srcALen + (srcBLen - 1u)); /* Updating the pointer position to non zero value */ pOut += j; } else { /* Initialization of inputA pointer */ pIn1 = (pSrcB); /* Initialization of inputB pointer */ pIn2 = (pSrcA); /* srcBLen is always considered as shorter or equal to srcALen */ j = srcBLen; srcBLen = srcALen; srcALen = j; /* CORR(x, y) = Reverse order(CORR(y, x)) */ /* Hence set the destination pointer to point to the last output sample */ pOut = pDst + ((srcALen + srcBLen) - 2u); /* Destination address modifier is set to -1 */ inc = -1; } /* The function is internally * divided into three parts according to the number of multiplications that has to be * taken place between inputA samples and inputB samples. In the first part of the * algorithm, the multiplications increase by one for every iteration. * In the second part of the algorithm, srcBLen number of multiplications are done. * In the third part of the algorithm, the multiplications decrease by one * for every iteration.*/ /* The algorithm is implemented in three stages. * The loop counters of each stage is initiated here. */ blockSize1 = srcBLen - 1u; blockSize2 = srcALen - (srcBLen - 1u); blockSize3 = blockSize1; /* -------------------------- * Initializations of stage1 * -------------------------*/ /* sum = x[0] * y[srcBlen - 1] * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1] * .... * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1] */ /* In this stage the MAC operations are increased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = 1u; /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ pSrc1 = pIn2 + (srcBLen - 1u); py = pSrc1; /* ------------------------ * Stage1 process * ----------------------*/ /* The first loop starts here */ while(blockSize1 > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* x[0] * y[srcBLen - 4] , x[1] * y[srcBLen - 3] */ sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ /* x[0] * y[srcBLen - 1] */ sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Update the inputA and inputB pointers for next MAC calculation */ py = pSrc1 - count; px = pIn1; /* Increment the MAC count */ count++; /* Decrement the loop counter */ blockSize1--; } /* -------------------------- * Initializations of stage2 * ------------------------*/ /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1] * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1] * .... * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] */ /* Working pointer of inputA */ px = pIn1; /* Working pointer of inputB */ py = pIn2; /* count is index by which the pointer pIn1 to be incremented */ count = 0u; /* ------------------- * Stage2 process * ------------------*/ /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. * So, to loop unroll over blockSize2, * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */ if(srcBLen >= 4u) { /* Loop unroll over blockSize2, by 4 */ blkCnt = blockSize2 >> 2u; while(blkCnt > 0u) { /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* read x[0], x[1], x[2] samples */ a = *px; b = *(px + 1); #ifndef ARM_MATH_BIG_ENDIAN x0 = __PKHBT(a, b, 16); a = *(px + 2); x1 = __PKHBT(b, a, 16); #else x0 = __PKHBT(b, a, 16); a = *(px + 2); x1 = __PKHBT(a, b, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ px += 2u; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ do { /* Read the first two inputB samples using SIMD: * y[0] and y[1] */ a = *py; b = *(py + 1); #ifndef ARM_MATH_BIG_ENDIAN c0 = __PKHBT(a, b, 16); #else c0 = __PKHBT(b, a, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* acc0 += x[0] * y[0] + x[1] * y[1] */ acc0 = __SMLAD(x0, c0, acc0); /* acc1 += x[1] * y[0] + x[2] * y[1] */ acc1 = __SMLAD(x1, c0, acc1); /* Read x[2], x[3], x[4] */ a = *px; b = *(px + 1); #ifndef ARM_MATH_BIG_ENDIAN x2 = __PKHBT(a, b, 16); a = *(px + 2); x3 = __PKHBT(b, a, 16); #else x2 = __PKHBT(b, a, 16); a = *(px + 2); x3 = __PKHBT(a, b, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* acc2 += x[2] * y[0] + x[3] * y[1] */ acc2 = __SMLAD(x2, c0, acc2); /* acc3 += x[3] * y[0] + x[4] * y[1] */ acc3 = __SMLAD(x3, c0, acc3); /* Read y[2] and y[3] */ a = *(py + 2); b = *(py + 3); py += 4u; #ifndef ARM_MATH_BIG_ENDIAN c0 = __PKHBT(a, b, 16); #else c0 = __PKHBT(b, a, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* acc0 += x[2] * y[2] + x[3] * y[3] */ acc0 = __SMLAD(x2, c0, acc0); /* acc1 += x[3] * y[2] + x[4] * y[3] */ acc1 = __SMLAD(x3, c0, acc1); /* Read x[4], x[5], x[6] */ a = *(px + 2); b = *(px + 3); #ifndef ARM_MATH_BIG_ENDIAN x0 = __PKHBT(a, b, 16); a = *(px + 4); x1 = __PKHBT(b, a, 16); #else x0 = __PKHBT(b, a, 16); a = *(px + 4); x1 = __PKHBT(a, b, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ px += 4u; /* acc2 += x[4] * y[2] + x[5] * y[3] */ acc2 = __SMLAD(x0, c0, acc2); /* acc3 += x[5] * y[2] + x[6] * y[3] */ acc3 = __SMLAD(x1, c0, acc3); } while(--k); /* For the next MAC operations, SIMD is not used * So, the 16 bit pointer if inputB, py is updated */ /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4u; if(k == 1u) { /* Read y[4] */ c0 = *py; #ifdef ARM_MATH_BIG_ENDIAN c0 = c0 << 16u; #else c0 = c0 & 0x0000FFFF; #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ /* Read x[7] */ a = *px; b = *(px + 1); px++;; #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(a, b, 16); #else x3 = __PKHBT(b, a, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ px++; /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLADX(x1, c0, acc2); acc3 = __SMLADX(x3, c0, acc3); } if(k == 2u) { /* Read y[4], y[5] */ a = *py; b = *(py + 1); #ifndef ARM_MATH_BIG_ENDIAN c0 = __PKHBT(a, b, 16); #else c0 = __PKHBT(b, a, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Read x[7], x[8], x[9] */ a = *px; b = *(px + 1); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(a, b, 16); a = *(px + 2); x2 = __PKHBT(b, a, 16); #else x3 = __PKHBT(b, a, 16); a = *(px + 2); x2 = __PKHBT(a, b, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ px += 2u; /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLAD(x3, c0, acc2); acc3 = __SMLAD(x2, c0, acc3); } if(k == 3u) { /* Read y[4], y[5] */ a = *py; b = *(py + 1); #ifndef ARM_MATH_BIG_ENDIAN c0 = __PKHBT(a, b, 16); #else c0 = __PKHBT(b, a, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ py += 2u; /* Read x[7], x[8], x[9] */ a = *px; b = *(px + 1); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(a, b, 16); a = *(px + 2); x2 = __PKHBT(b, a, 16); #else x3 = __PKHBT(b, a, 16); a = *(px + 2); x2 = __PKHBT(a, b, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Perform the multiply-accumulates */ acc0 = __SMLAD(x0, c0, acc0); acc1 = __SMLAD(x1, c0, acc1); acc2 = __SMLAD(x3, c0, acc2); acc3 = __SMLAD(x2, c0, acc3); c0 = (*py); /* Read y[6] */ #ifdef ARM_MATH_BIG_ENDIAN c0 = c0 << 16u; #else c0 = c0 & 0x0000FFFF; #endif /* #ifdef ARM_MATH_BIG_ENDIAN */ /* Read x[10] */ b = *(px + 3); #ifndef ARM_MATH_BIG_ENDIAN x3 = __PKHBT(a, b, 16); #else x3 = __PKHBT(b, a, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ px += 3u; /* Perform the multiply-accumulates */ acc0 = __SMLADX(x1, c0, acc0); acc1 = __SMLAD(x2, c0, acc1); acc2 = __SMLADX(x2, c0, acc2); acc3 = __SMLADX(x3, c0, acc3); } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (acc0 >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; *pOut = (q15_t) (acc1 >> 15); pOut += inc; *pOut = (q15_t) (acc2 >> 15); pOut += inc; *pOut = (q15_t) (acc3 >> 15); pOut += inc; /* Increment the pointer pIn1 index, count by 1 */ count += 4u; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pIn2; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize2 % 0x4u; while(blkCnt > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = srcBLen >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* Perform the multiply-accumulates */ sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = srcBLen % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Increment the pointer pIn1 index, count by 1 */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pIn2; /* Decrement the loop counter */ blkCnt--; } } else { /* If the srcBLen is not a multiple of 4, * the blockSize2 loop cannot be unrolled by 4 */ blkCnt = blockSize2; while(blkCnt > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Loop over srcBLen */ k = srcBLen; while(k > 0u) { /* Perform the multiply-accumulate */ sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Increment the MAC count */ count++; /* Update the inputA and inputB pointers for next MAC calculation */ px = pIn1 + count; py = pIn2; /* Decrement the loop counter */ blkCnt--; } } /* -------------------------- * Initializations of stage3 * -------------------------*/ /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] * .... * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1] * sum += x[srcALen-1] * y[0] */ /* In this stage the MAC operations are decreased by 1 for every iteration. The count variable holds the number of MAC operations performed */ count = srcBLen - 1u; /* Working pointer of inputA */ pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); px = pSrc1; /* Working pointer of inputB */ py = pIn2; /* ------------------- * Stage3 process * ------------------*/ while(blockSize3 > 0u) { /* Accumulator is made zero for every iteration */ sum = 0; /* Apply loop unrolling and compute 4 MACs simultaneously. */ k = count >> 2u; /* First part of the processing with loop unrolling. Compute 4 MACs at a time. ** a second loop below computes MACs for the remaining 1 to 3 samples. */ while(k > 0u) { /* Perform the multiply-accumulates */ sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* If the count is not a multiple of 4, compute any remaining MACs here. ** No loop unrolling is used. */ k = count % 0x4u; while(k > 0u) { /* Perform the multiply-accumulates */ sum += ((q31_t) * px++ * *py++); /* Decrement the loop counter */ k--; } /* Store the result in the accumulator in the destination buffer. */ *pOut = (q15_t) (sum >> 15); /* Destination pointer is updated according to the address modifier, inc */ pOut += inc; /* Update the inputA and inputB pointers for next MAC calculation */ px = ++pSrc1; py = pIn2; /* Decrement the MAC count */ count--; /* Decrement the loop counter */ blockSize3--; } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ } /** * @} end of Corr group */