/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_fir_decimate_fast_q31.c * * Description: Fast Q31 FIR Decimator. * * Target Processor: Cortex-M4/Cortex-M3 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR_decimate * @{ */ /** * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4. * @param[in] *S points to an instance of the Q31 FIR decimator structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data * @param[in] blockSize number of input samples to process per call. * @return none * * Scaling and Overflow Behavior: * * \par * This function is optimized for speed at the expense of fixed-point precision and overflow protection. * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. * These intermediate results are added to a 2.30 accumulator. * Finally, the accumulator is saturated and converted to a 1.31 result. * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits (where log2 is read as log to the base 2). * * \par * Refer to the function arm_fir_decimate_q31() for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. * Both the slow and the fast versions use the same instance structure. * Use the function arm_fir_decimate_init_q31() to initialize the filter structure. */ void arm_fir_decimate_fast_q31( arm_fir_decimate_instance_q31 * S, q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { q31_t *pState = S->pState; /* State pointer */ q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q31_t *pStateCurnt; /* Points to the current sample of the state */ q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ q31_t *px; /* Temporary pointers for state buffer */ q31_t *pb; /* Temporary pointers for coefficient buffer */ q31_t sum0; /* Accumulator */ uint32_t numTaps = S->numTaps; /* Number of taps */ uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M; /* Loop counters */ uint32_t blkCntN2; q31_t x1; q31_t acc0, acc1; q31_t *px0, *px1; /* S->pState buffer contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = S->pState + (numTaps - 1u); /* Total number of output samples to be computed */ blkCnt = outBlockSize / 2; blkCntN2 = outBlockSize - (2 * blkCnt); while(blkCnt > 0u) { /* Copy decimation factor number of new input samples into the state buffer */ i = 2 * S->M; do { *pStateCurnt++ = *pSrc++; } while(--i); /* Set accumulator to zero */ acc0 = 0; acc1 = 0; /* Initialize state pointer */ px0 = pState; px1 = pState + S->M; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while(tapCnt > 0u) { /* Read the b[numTaps-1] coefficient */ c0 = *(pb); /* Read x[n-numTaps-1] for sample 0 sample 1 */ x0 = *(px0); x1 = *(px1); /* Perform the multiply-accumulate */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* Read the b[numTaps-2] coefficient */ c0 = *(pb + 1u); /* Read x[n-numTaps-2] for sample 0 sample 1 */ x0 = *(px0 + 1u); x1 = *(px1 + 1u); /* Perform the multiply-accumulate */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* Read the b[numTaps-3] coefficient */ c0 = *(pb + 2u); /* Read x[n-numTaps-3] for sample 0 sample 1 */ x0 = *(px0 + 2u); x1 = *(px1 + 2u); pb += 4u; /* Perform the multiply-accumulate */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* Read the b[numTaps-4] coefficient */ c0 = *(pb - 1u); /* Read x[n-numTaps-4] for sample 0 sample 1 */ x0 = *(px0 + 3u); x1 = *(px1 + 3u); /* Perform the multiply-accumulate */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* update state pointers */ px0 += 4u; px1 += 4u; /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4u; while(tapCnt > 0u) { /* Read coefficients */ c0 = *(pb++); /* Fetch 1 state variable */ x0 = *(px0++); x1 = *(px1++); /* Perform the multiply-accumulate */ acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M * 2; /* The result is in the accumulator, store in the destination buffer. */ *pDst++ = (q31_t) (acc0 << 1); *pDst++ = (q31_t) (acc1 << 1); /* Decrement the loop counter */ blkCnt--; } while(blkCntN2 > 0u) { /* Copy decimation factor number of new input samples into the state buffer */ i = S->M; do { *pStateCurnt++ = *pSrc++; } while(--i); /* Set accumulator to zero */ sum0 = 0; /* Initialize state pointer */ px = pState; /* Initialize coeff pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ while(tapCnt > 0u) { /* Read the b[numTaps-1] coefficient */ c0 = *(pb++); /* Read x[n-numTaps-1] sample */ x0 = *(px++); /* Perform the multiply-accumulate */ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); /* Read the b[numTaps-2] coefficient */ c0 = *(pb++); /* Read x[n-numTaps-2] sample */ x0 = *(px++); /* Perform the multiply-accumulate */ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); /* Read the b[numTaps-3] coefficient */ c0 = *(pb++); /* Read x[n-numTaps-3] sample */ x0 = *(px++); /* Perform the multiply-accumulate */ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); /* Read the b[numTaps-4] coefficient */ c0 = *(pb++); /* Read x[n-numTaps-4] sample */ x0 = *(px++); /* Perform the multiply-accumulate */ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4u; while(tapCnt > 0u) { /* Read coefficients */ c0 = *(pb++); /* Fetch 1 state variable */ x0 = *(px++); /* Perform the multiply-accumulate */ sum0 = (q31_t) ((((q63_t) sum0 << 32) + ((q63_t) x0 * c0)) >> 32); /* Decrement the loop counter */ tapCnt--; } /* Advance the state pointer by the decimation factor * to process the next group of decimation factor number samples */ pState = pState + S->M; /* The result is in the accumulator, store in the destination buffer. */ *pDst++ = (q31_t) (sum0 << 1); /* Decrement the loop counter */ blkCntN2--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; i = (numTaps - 1u) >> 2u; /* copy data */ while(i > 0u) { *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; /* Decrement the loop counter */ i--; } i = (numTaps - 1u) % 0x04u; /* copy data */ while(i > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ i--; } } /** * @} end of FIR_decimate group */