/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_fir_lattice_q15.c * * Description: Q15 FIR lattice filter processing function. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR_Lattice * @{ */ /** * @brief Processing function for the Q15 FIR lattice filter. * @param[in] *S points to an instance of the Q15 FIR lattice structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data * @param[in] blockSize number of samples to process. * @return none. */ void arm_fir_lattice_q15( const arm_fir_lattice_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *px; /* temporary state pointer */ q15_t *pk; /* temporary coefficient pointer */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t fcurnt1, fnext1, gcurnt1 = 0, gnext1; /* temporary variables for first sample in loop unrolling */ q31_t fcurnt2, fnext2, gnext2; /* temporary variables for second sample in loop unrolling */ q31_t fcurnt3, fnext3, gnext3; /* temporary variables for third sample in loop unrolling */ q31_t fcurnt4, fnext4, gnext4; /* temporary variables for fourth sample in loop unrolling */ uint32_t numStages = S->numStages; /* Number of stages in the filter */ uint32_t blkCnt, stageCnt; /* temporary variables for counts */ pState = &S->pState[0]; blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Read two samples from input buffer */ /* f0(n) = x(n) */ fcurnt1 = *pSrc++; fcurnt2 = *pSrc++; /* Initialize coeff pointer */ pk = (pCoeffs); /* Initialize state pointer */ px = pState; /* Read g0(n-1) from state */ gcurnt1 = *px; /* Process first sample for first tap */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1; fnext1 = __SSAT(fnext1, 16); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext1 = (q31_t) ((fcurnt1 * (*pk)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* Process second sample for first tap */ /* for sample 2 processing */ fnext2 = (q31_t) ((fcurnt1 * (*pk)) >> 15u) + fcurnt2; fnext2 = __SSAT(fnext2, 16); gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + fcurnt1; gnext2 = __SSAT(gnext2, 16); /* Read next two samples from input buffer */ /* f0(n+2) = x(n+2) */ fcurnt3 = *pSrc++; fcurnt4 = *pSrc++; /* Copy only last input samples into the state buffer which is used for next four samples processing */ *px++ = (q15_t) fcurnt4; /* Process third sample for first tap */ fnext3 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + fcurnt3; fnext3 = __SSAT(fnext3, 16); gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + fcurnt2; gnext3 = __SSAT(gnext3, 16); /* Process fourth sample for first tap */ fnext4 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + fcurnt4; fnext4 = __SSAT(fnext4, 16); gnext4 = (q31_t) ((fcurnt4 * (*pk++)) >> 15u) + fcurnt3; gnext4 = __SSAT(gnext4, 16); /* Update of f values for next coefficient set processing */ fcurnt1 = fnext1; fcurnt2 = fnext2; fcurnt3 = fnext3; fcurnt4 = fnext4; /* Loop unrolling. Process 4 taps at a time . */ stageCnt = (numStages - 1u) >> 2; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numStages-3 coefficients. */ /* Process 2nd, 3rd, 4th and 5th taps ... here */ while(stageCnt > 0u) { /* Read g1(n-1), g3(n-1) .... from state */ gcurnt1 = *px; /* save g1(n) in state buffer */ *px++ = (q15_t) gnext4; /* Process first sample for 2nd, 6th .. tap */ /* Sample processing for K2, K6.... */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1; fnext1 = __SSAT(fnext1, 16); /* Process second sample for 2nd, 6th .. tap */ /* for sample 2 processing */ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2; fnext2 = __SSAT(fnext2, 16); /* Process third sample for 2nd, 6th .. tap */ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3; fnext3 = __SSAT(fnext3, 16); /* Process fourth sample for 2nd, 6th .. tap */ /* fnext4 = fcurnt4 + (*pk) * gnext3; */ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4; fnext4 = __SSAT(fnext4, 16); /* g1(n) = f0(n) * K1 + g0(n-1) */ /* Calculation of state values for next stage */ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3; gnext4 = __SSAT(gnext4, 16); gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2; gnext3 = __SSAT(gnext3, 16); gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1; gnext2 = __SSAT(gnext2, 16); gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* Read g2(n-1), g4(n-1) .... from state */ gcurnt1 = *px; /* save g1(n) in state buffer */ *px++ = (q15_t) gnext4; /* Sample processing for K3, K7.... */ /* Process first sample for 3rd, 7th .. tap */ /* f3(n) = f2(n) + K3 * g2(n-1) */ fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fnext1; fcurnt1 = __SSAT(fcurnt1, 16); /* Process second sample for 3rd, 7th .. tap */ fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fnext2; fcurnt2 = __SSAT(fcurnt2, 16); /* Process third sample for 3rd, 7th .. tap */ fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fnext3; fcurnt3 = __SSAT(fcurnt3, 16); /* Process fourth sample for 3rd, 7th .. tap */ fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fnext4; fcurnt4 = __SSAT(fcurnt4, 16); /* Calculation of state values for next stage */ /* g3(n) = f2(n) * K3 + g2(n-1) */ gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15u) + gnext3; gnext4 = __SSAT(gnext4, 16); gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15u) + gnext2; gnext3 = __SSAT(gnext3, 16); gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15u) + gnext1; gnext2 = __SSAT(gnext2, 16); gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* Read g1(n-1), g3(n-1) .... from state */ gcurnt1 = *px; /* save g1(n) in state buffer */ *px++ = (q15_t) gnext4; /* Sample processing for K4, K8.... */ /* Process first sample for 4th, 8th .. tap */ /* f4(n) = f3(n) + K4 * g3(n-1) */ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1; fnext1 = __SSAT(fnext1, 16); /* Process second sample for 4th, 8th .. tap */ /* for sample 2 processing */ fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2; fnext2 = __SSAT(fnext2, 16); /* Process third sample for 4th, 8th .. tap */ fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3; fnext3 = __SSAT(fnext3, 16); /* Process fourth sample for 4th, 8th .. tap */ fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4; fnext4 = __SSAT(fnext4, 16); /* g4(n) = f3(n) * K4 + g3(n-1) */ /* Calculation of state values for next stage */ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3; gnext4 = __SSAT(gnext4, 16); gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2; gnext3 = __SSAT(gnext3, 16); gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1; gnext2 = __SSAT(gnext2, 16); gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* Read g2(n-1), g4(n-1) .... from state */ gcurnt1 = *px; /* save g4(n) in state buffer */ *px++ = (q15_t) gnext4; /* Sample processing for K5, K9.... */ /* Process first sample for 5th, 9th .. tap */ /* f5(n) = f4(n) + K5 * g4(n-1) */ fcurnt1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fnext1; fcurnt1 = __SSAT(fcurnt1, 16); /* Process second sample for 5th, 9th .. tap */ fcurnt2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fnext2; fcurnt2 = __SSAT(fcurnt2, 16); /* Process third sample for 5th, 9th .. tap */ fcurnt3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fnext3; fcurnt3 = __SSAT(fcurnt3, 16); /* Process fourth sample for 5th, 9th .. tap */ fcurnt4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fnext4; fcurnt4 = __SSAT(fcurnt4, 16); /* Calculation of state values for next stage */ /* g5(n) = f4(n) * K5 + g4(n-1) */ gnext4 = (q31_t) ((fnext4 * (*pk)) >> 15u) + gnext3; gnext4 = __SSAT(gnext4, 16); gnext3 = (q31_t) ((fnext3 * (*pk)) >> 15u) + gnext2; gnext3 = __SSAT(gnext3, 16); gnext2 = (q31_t) ((fnext2 * (*pk)) >> 15u) + gnext1; gnext2 = __SSAT(gnext2, 16); gnext1 = (q31_t) ((fnext1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); stageCnt--; } /* If the (filter length -1) is not a multiple of 4, compute the remaining filter taps */ stageCnt = (numStages - 1u) % 0x4u; while(stageCnt > 0u) { gcurnt1 = *px; /* save g value in state buffer */ *px++ = (q15_t) gnext4; /* Process four samples for last three taps here */ fnext1 = (q31_t) ((gcurnt1 * (*pk)) >> 15u) + fcurnt1; fnext1 = __SSAT(fnext1, 16); fnext2 = (q31_t) ((gnext1 * (*pk)) >> 15u) + fcurnt2; fnext2 = __SSAT(fnext2, 16); fnext3 = (q31_t) ((gnext2 * (*pk)) >> 15u) + fcurnt3; fnext3 = __SSAT(fnext3, 16); fnext4 = (q31_t) ((gnext3 * (*pk)) >> 15u) + fcurnt4; fnext4 = __SSAT(fnext4, 16); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext4 = (q31_t) ((fcurnt4 * (*pk)) >> 15u) + gnext3; gnext4 = __SSAT(gnext4, 16); gnext3 = (q31_t) ((fcurnt3 * (*pk)) >> 15u) + gnext2; gnext3 = __SSAT(gnext3, 16); gnext2 = (q31_t) ((fcurnt2 * (*pk)) >> 15u) + gnext1; gnext2 = __SSAT(gnext2, 16); gnext1 = (q31_t) ((fcurnt1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* Update of f values for next coefficient set processing */ fcurnt1 = fnext1; fcurnt2 = fnext2; fcurnt3 = fnext3; fcurnt4 = fnext4; stageCnt--; } /* The results in the 4 accumulators, store in the destination buffer. */ /* y(n) = fN(n) */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(fcurnt1, fcurnt2, 16); *__SIMD32(pDst)++ = __PKHBT(fcurnt3, fcurnt4, 16); #else *__SIMD32(pDst)++ = __PKHBT(fcurnt2, fcurnt1, 16); *__SIMD32(pDst)++ = __PKHBT(fcurnt4, fcurnt3, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* f0(n) = x(n) */ fcurnt1 = *pSrc++; /* Initialize coeff pointer */ pk = (pCoeffs); /* Initialize state pointer */ px = pState; /* read g2(n) from state buffer */ gcurnt1 = *px; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15u) + fcurnt1; fnext1 = __SSAT(fnext1, 16); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* save g1(n) in state buffer */ *px++ = (q15_t) fcurnt1; /* f1(n) is saved in fcurnt1 for next stage processing */ fcurnt1 = fnext1; stageCnt = (numStages - 1u); /* stage loop */ while(stageCnt > 0u) { /* read g2(n) from state buffer */ gcurnt1 = *px; /* save g1(n) in state buffer */ *px++ = (q15_t) gnext1; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext1 = (((q31_t) gcurnt1 * (*pk)) >> 15u) + fcurnt1; fnext1 = __SSAT(fnext1, 16); /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext1 = (((q31_t) fcurnt1 * (*pk++)) >> 15u) + gcurnt1; gnext1 = __SSAT(gnext1, 16); /* f1(n) is saved in fcurnt1 for next stage processing */ fcurnt1 = fnext1; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = __SSAT(fcurnt1, 16); blkCnt--; } #else /* Run the below code for Cortex-M0 */ q31_t fcurnt, fnext, gcurnt, gnext; /* temporary variables */ uint32_t numStages = S->numStages; /* Length of the filter */ uint32_t blkCnt, stageCnt; /* temporary variables for counts */ pState = &S->pState[0]; blkCnt = blockSize; while(blkCnt > 0u) { /* f0(n) = x(n) */ fcurnt = *pSrc++; /* Initialize coeff pointer */ pk = (pCoeffs); /* Initialize state pointer */ px = pState; /* read g0(n-1) from state buffer */ gcurnt = *px; /* for sample 1 processing */ /* f1(n) = f0(n) + K1 * g0(n-1) */ fnext = ((gcurnt * (*pk)) >> 15u) + fcurnt; fnext = __SSAT(fnext, 16); /* g1(n) = f0(n) * K1 + g0(n-1) */ gnext = ((fcurnt * (*pk++)) >> 15u) + gcurnt; gnext = __SSAT(gnext, 16); /* save f0(n) in state buffer */ *px++ = (q15_t) fcurnt; /* f1(n) is saved in fcurnt for next stage processing */ fcurnt = fnext; stageCnt = (numStages - 1u); /* stage loop */ while(stageCnt > 0u) { /* read g1(n-1) from state buffer */ gcurnt = *px; /* save g0(n-1) in state buffer */ *px++ = (q15_t) gnext; /* Sample processing for K2, K3.... */ /* f2(n) = f1(n) + K2 * g1(n-1) */ fnext = ((gcurnt * (*pk)) >> 15u) + fcurnt; fnext = __SSAT(fnext, 16); /* g2(n) = f1(n) * K2 + g1(n-1) */ gnext = ((fcurnt * (*pk++)) >> 15u) + gcurnt; gnext = __SSAT(gnext, 16); /* f1(n) is saved in fcurnt for next stage processing */ fcurnt = fnext; stageCnt--; } /* y(n) = fN(n) */ *pDst++ = __SSAT(fcurnt, 16); blkCnt--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ } /** * @} end of FIR_Lattice group */