/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_fir_q15.c * * Description: Q15 FIR filter processing function. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup FIR * @{ */ /** * @brief Processing function for the Q15 FIR filter. * @param[in] *S points to an instance of the Q15 FIR structure. * @param[in] *pSrc points to the block of input data. * @param[out] *pDst points to the block of output data. * @param[in] blockSize number of samples to process per call. * @return none. * * * \par Restrictions * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE * In this case input, output, state buffers should be aligned by 32-bit * * Scaling and Overflow Behavior: * \par * The function is implemented using a 64-bit internal accumulator. * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. * * \par * Refer to the function arm_fir_fast_q15() for a faster but less precise implementation of this function. */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ #ifndef UNALIGNED_SUPPORT_DISABLE void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px1; /* Temporary q15 pointer for state buffer */ q15_t *pb; /* Temporary pointer for coefficient buffer */ q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */ q63_t acc0, acc1, acc2, acc3; /* Accumulators */ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1u)]); /* Apply loop unrolling and compute 4 output values simultaneously. * The variables acc0 ... acc3 hold output values that are being computed: * * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] */ blkCnt = blockSize >> 2; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Copy four new input samples into the state buffer. ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */ *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++; /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Initialize state pointer of type q15 */ px1 = pState; /* Initialize coeff pointer of type q31 */ pb = pCoeffs; /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */ x0 = _SIMD32_OFFSET(px1); /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */ x1 = _SIMD32_OFFSET(px1 + 1u); px1 += 2u; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-4 coefficients. */ tapCnt = numTaps >> 2; while(tapCnt > 0u) { /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */ c0 = *__SIMD32(pb)++; /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */ acc0 = __SMLALD(x0, c0, acc0); /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */ acc1 = __SMLALD(x1, c0, acc1); /* Read state x[n-N-2], x[n-N-3] */ x2 = _SIMD32_OFFSET(px1); /* Read state x[n-N-3], x[n-N-4] */ x3 = _SIMD32_OFFSET(px1 + 1u); /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */ acc2 = __SMLALD(x2, c0, acc2); /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */ acc3 = __SMLALD(x3, c0, acc3); /* Read coefficients b[N-2], b[N-3] */ c0 = *__SIMD32(pb)++; /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */ acc0 = __SMLALD(x2, c0, acc0); /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */ acc1 = __SMLALD(x3, c0, acc1); /* Read state x[n-N-4], x[n-N-5] */ x0 = _SIMD32_OFFSET(px1 + 2u); /* Read state x[n-N-5], x[n-N-6] */ x1 = _SIMD32_OFFSET(px1 + 3u); /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */ acc2 = __SMLALD(x0, c0, acc2); /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */ acc3 = __SMLALD(x1, c0, acc3); px1 += 4u; tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps. ** This is always be 2 taps since the filter length is even. */ if((numTaps & 0x3u) != 0u) { /* Read 2 coefficients */ c0 = *__SIMD32(pb)++; /* Fetch 4 state variables */ x2 = _SIMD32_OFFSET(px1); x3 = _SIMD32_OFFSET(px1 + 1u); /* Perform the multiply-accumulates */ acc0 = __SMLALD(x0, c0, acc0); px1 += 2u; acc1 = __SMLALD(x1, c0, acc1); acc2 = __SMLALD(x2, c0, acc2); acc3 = __SMLALD(x3, c0, acc3); } /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation. ** Then store the 4 outputs in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Advance the state pointer by 4 to process the next group of 4 samples */ pState = pState + 4; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* Copy two samples into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc0 = 0; /* Initialize state pointer of type q15 */ px1 = pState; /* Initialize coeff pointer of type q31 */ pb = pCoeffs; tapCnt = numTaps >> 1; do { c0 = *__SIMD32(pb)++; x0 = *__SIMD32(px1)++; acc0 = __SMLALD(x0, c0, acc0); tapCnt--; } while(tapCnt > 0u); /* The result is in 2.30 format. Convert to 1.15 with saturation. ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Advance state pointer by 1 for the next sample */ pState = pState + 1; /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1u) >> 2; while(tapCnt > 0u) { /* Copy state values to start of state buffer */ *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1u) % 0x4u; /* copy remaining data */ while(tapCnt > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } #else /* UNALIGNED_SUPPORT_DISABLE */ void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q63_t acc0, acc1, acc2, acc3; /* Accumulators */ q15_t *pb; /* Temporary pointer for coefficient buffer */ q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */ q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */ uint32_t numTaps = S->numTaps; /* Number of taps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1u)]); /* Apply loop unrolling and compute 4 output values simultaneously. * The variables acc0 ... acc3 hold output values that are being computed: * * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1] * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2] * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3] */ blkCnt = blockSize >> 2; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* Copy four new input samples into the state buffer. ** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */ *pStateCurnt++ = *pSrc++; *pStateCurnt++ = *pSrc++; *pStateCurnt++ = *pSrc++; *pStateCurnt++ = *pSrc++; /* Set all accumulators to zero */ acc0 = 0; acc1 = 0; acc2 = 0; acc3 = 0; /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */ px = pState; /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */ pb = pCoeffs; /* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */ x0 = *__SIMD32(px)++; /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */ x2 = *__SIMD32(px)++; /* Loop over the number of taps. Unroll by a factor of 4. ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */ tapCnt = numTaps >> 2; while(tapCnt > 0) { /* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */ c0 = *__SIMD32(pb)++; /* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */ acc0 = __SMLALD(x0, c0, acc0); /* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */ acc2 = __SMLALD(x2, c0, acc2); /* pack x[n-N-1] and x[n-N-2] */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x2, x0, 0); #else x1 = __PKHBT(x0, x2, 0); #endif /* Read state x[n-N-4], x[n-N-5] */ x0 = _SIMD32_OFFSET(px); /* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */ acc1 = __SMLALDX(x1, c0, acc1); /* pack x[n-N-3] and x[n-N-4] */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x0, x2, 0); #else x1 = __PKHBT(x2, x0, 0); #endif /* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */ acc3 = __SMLALDX(x1, c0, acc3); /* Read coefficients b[N-2], b[N-3] */ c0 = *__SIMD32(pb)++; /* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */ acc0 = __SMLALD(x2, c0, acc0); /* Read state x[n-N-6], x[n-N-7] with offset */ x2 = _SIMD32_OFFSET(px + 2u); /* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */ acc2 = __SMLALD(x0, c0, acc2); /* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */ acc1 = __SMLALDX(x1, c0, acc1); /* pack x[n-N-5] and x[n-N-6] */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x2, x0, 0); #else x1 = __PKHBT(x0, x2, 0); #endif /* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */ acc3 = __SMLALDX(x1, c0, acc3); /* Update state pointer for next state reading */ px += 4u; /* Decrement tap count */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps. ** This is always be 2 taps since the filter length is even. */ if((numTaps & 0x3u) != 0u) { /* Read last two coefficients */ c0 = *__SIMD32(pb)++; /* Perform the multiply-accumulates */ acc0 = __SMLALD(x0, c0, acc0); acc2 = __SMLALD(x2, c0, acc2); /* pack state variables */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x2, x0, 0); #else x1 = __PKHBT(x0, x2, 0); #endif /* Read last state variables */ x0 = *__SIMD32(px); /* Perform the multiply-accumulates */ acc1 = __SMLALDX(x1, c0, acc1); /* pack state variables */ #ifndef ARM_MATH_BIG_ENDIAN x1 = __PKHBT(x0, x2, 0); #else x1 = __PKHBT(x2, x0, 0); #endif /* Perform the multiply-accumulates */ acc3 = __SMLALDX(x1, c0, acc3); } /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation. ** Then store the 4 outputs in the destination buffer. */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); #else *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); *__SIMD32(pDst)++ = __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* Advance the state pointer by 4 to process the next group of 4 samples */ pState = pState + 4; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* Copy two samples into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc0 = 0; /* Use SIMD to hold states and coefficients */ px = pState; pb = pCoeffs; tapCnt = numTaps >> 1u; do { acc0 += (q31_t) * px++ * *pb++; acc0 += (q31_t) * px++ * *pb++; tapCnt--; } while(tapCnt > 0u); /* The result is in 2.30 format. Convert to 1.15 with saturation. ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); /* Advance state pointer by 1 for the next sample */ pState = pState + 1u; /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1u) >> 2; while(tapCnt > 0u) { *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1u) % 0x4u; /* copy remaining data */ while(tapCnt > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ #else /* ARM_MATH_CM0_FAMILY */ /* Run the below code for Cortex-M0 */ void arm_fir_q15( const arm_fir_instance_q15 * S, q15_t * pSrc, q15_t * pDst, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t *px; /* Temporary pointer for state buffer */ q15_t *pb; /* Temporary pointer for coefficient buffer */ q63_t acc; /* Accumulator */ uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */ uint32_t tapCnt, blkCnt; /* Loop counters */ /* S->pState buffer contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1u)]); /* Initialize blkCnt with blockSize */ blkCnt = blockSize; while(blkCnt > 0u) { /* Copy one sample at a time into state buffer */ *pStateCurnt++ = *pSrc++; /* Set the accumulator to zero */ acc = 0; /* Initialize state pointer */ px = pState; /* Initialize Coefficient pointer */ pb = pCoeffs; tapCnt = numTaps; /* Perform the multiply-accumulates */ do { /* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */ acc += (q31_t) * px++ * *pb++; tapCnt--; } while(tapCnt > 0u); /* The result is in 2.30 format. Convert to 1.15 ** Then store the output in the destination buffer. */ *pDst++ = (q15_t) __SSAT((acc >> 15u), 16); /* Advance state pointer by 1 for the next sample */ pState = pState + 1; /* Decrement the samples loop counter */ blkCnt--; } /* Processing is complete. ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. ** This prepares the state buffer for the next function call. */ /* Points to the start of the state buffer */ pStateCurnt = S->pState; /* Copy numTaps number of values */ tapCnt = (numTaps - 1u); /* copy data */ while(tapCnt > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ /** * @} end of FIR group */