/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_lms_q15.c * * Description: Processing function for the Q15 LMS filter. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupFilters */ /** * @addtogroup LMS * @{ */ /** * @brief Processing function for Q15 LMS filter. * @param[in] *S points to an instance of the Q15 LMS filter structure. * @param[in] *pSrc points to the block of input data. * @param[in] *pRef points to the block of reference data. * @param[out] *pOut points to the block of output data. * @param[out] *pErr points to the block of error data. * @param[in] blockSize number of samples to process. * @return none. * * \par Scaling and Overflow Behavior: * The function is implemented using a 64-bit internal accumulator. * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. * Lastly, the accumulator is saturated to yield a result in 1.15 format. * * \par * In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted. * */ void arm_lms_q15( const arm_lms_instance_q15 * S, q15_t * pSrc, q15_t * pRef, q15_t * pOut, q15_t * pErr, uint32_t blockSize) { q15_t *pState = S->pState; /* State pointer */ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */ q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ q15_t *pStateCurnt; /* Points to the current sample of the state */ q15_t mu = S->mu; /* Adaptive factor */ q15_t *px; /* Temporary pointer for state */ q15_t *pb; /* Temporary pointer for coefficient buffer */ uint32_t tapCnt, blkCnt; /* Loop counters */ q63_t acc; /* Accumulator */ q15_t e = 0; /* error of data sample */ q15_t alpha; /* Intermediate constant for taps update */ q31_t acc_l, acc_h; int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */ int32_t uShift = (32 - lShift); #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t coef; /* Teporary variable for coefficient */ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1u)]); /* Initializing blkCnt with blockSize */ blkCnt = blockSize; while(blkCnt > 0u) { /* Copy the new input sample into the state buffer */ *pStateCurnt++ = *pSrc++; /* Initialize state pointer */ px = pState; /* Initialize coefficient pointer */ pb = pCoeffs; /* Set the accumulator to zero */ acc = 0; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2u; while(tapCnt > 0u) { /* acc += b[N] * x[n-N] + b[N-1] * x[n-N-1] */ /* Perform the multiply-accumulate */ #ifndef UNALIGNED_SUPPORT_DISABLE acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc); acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc); #else acc += (q63_t) (((q31_t) (*px++) * (*pb++))); acc += (q63_t) (((q31_t) (*px++) * (*pb++))); acc += (q63_t) (((q31_t) (*px++) * (*pb++))); acc += (q63_t) (((q31_t) (*px++) * (*pb++))); #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4u; while(tapCnt > 0u) { /* Perform the multiply-accumulate */ acc += (q63_t) (((q31_t) (*px++) * (*pb++))); /* Decrement the loop counter */ tapCnt--; } /* Calc lower part of acc */ acc_l = acc & 0xffffffff; /* Calc upper part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Apply shift for lower part of acc and upper part of acc */ acc = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Converting the result to 1.15 format and saturate the output */ acc = __SSAT(acc, 16); /* Store the result from accumulator into the destination buffer. */ *pOut++ = (q15_t) acc; /* Compute and store error */ e = *pRef++ - (q15_t) acc; *pErr++ = (q15_t) e; /* Compute alpha i.e. intermediate constant for taps update */ alpha = (q15_t) (((q31_t) e * (mu)) >> 15); /* Initialize state pointer */ /* Advance state pointer by 1 for the next sample */ px = pState++; /* Initialize coefficient pointer */ pb = pCoeffs; /* Loop unrolling. Process 4 taps at a time. */ tapCnt = numTaps >> 2u; /* Update filter coefficients */ while(tapCnt > 0u) { coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); /* Decrement the loop counter */ tapCnt--; } /* If the filter length is not a multiple of 4, compute the remaining filter taps */ tapCnt = numTaps % 0x4u; while(tapCnt > 0u) { /* Perform the multiply-accumulate */ coef = (q31_t) * pb + (((q31_t) alpha * (*px++)) >> 15); *pb++ = (q15_t) __SSAT((coef), 16); /* Decrement the loop counter */ tapCnt--; } /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. Now copy the last numTaps - 1 samples to the satrt of the state buffer. This prepares the state buffer for the next function call. */ /* Points to the start of the pState buffer */ pStateCurnt = S->pState; /* Calculation of count for copying integer writes */ tapCnt = (numTaps - 1u) >> 2; while(tapCnt > 0u) { #ifndef UNALIGNED_SUPPORT_DISABLE *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; #else *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; *pStateCurnt++ = *pState++; #endif tapCnt--; } /* Calculation of count for remaining q15_t data */ tapCnt = (numTaps - 1u) % 0x4u; /* copy data */ while(tapCnt > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } #else /* Run the below code for Cortex-M0 */ /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */ /* pStateCurnt points to the location where the new input data should be written */ pStateCurnt = &(S->pState[(numTaps - 1u)]); /* Loop over blockSize number of values */ blkCnt = blockSize; while(blkCnt > 0u) { /* Copy the new input sample into the state buffer */ *pStateCurnt++ = *pSrc++; /* Initialize pState pointer */ px = pState; /* Initialize pCoeffs pointer */ pb = pCoeffs; /* Set the accumulator to zero */ acc = 0; /* Loop over numTaps number of values */ tapCnt = numTaps; while(tapCnt > 0u) { /* Perform the multiply-accumulate */ acc += (q63_t) ((q31_t) (*px++) * (*pb++)); /* Decrement the loop counter */ tapCnt--; } /* Calc lower part of acc */ acc_l = acc & 0xffffffff; /* Calc upper part of acc */ acc_h = (acc >> 32) & 0xffffffff; /* Apply shift for lower part of acc and upper part of acc */ acc = (uint32_t) acc_l >> lShift | acc_h << uShift; /* Converting the result to 1.15 format and saturate the output */ acc = __SSAT(acc, 16); /* Store the result from accumulator into the destination buffer. */ *pOut++ = (q15_t) acc; /* Compute and store error */ e = *pRef++ - (q15_t) acc; *pErr++ = (q15_t) e; /* Compute alpha i.e. intermediate constant for taps update */ alpha = (q15_t) (((q31_t) e * (mu)) >> 15); /* Initialize pState pointer */ /* Advance state pointer by 1 for the next sample */ px = pState++; /* Initialize pCoeffs pointer */ pb = pCoeffs; /* Loop over numTaps number of values */ tapCnt = numTaps; while(tapCnt > 0u) { /* Perform the multiply-accumulate */ *pb++ += (q15_t) (((q31_t) alpha * (*px++)) >> 15); /* Decrement the loop counter */ tapCnt--; } /* Decrement the loop counter */ blkCnt--; } /* Processing is complete. Now copy the last numTaps - 1 samples to the start of the state buffer. This prepares the state buffer for the next function call. */ /* Points to the start of the pState buffer */ pStateCurnt = S->pState; /* Copy (numTaps - 1u) samples */ tapCnt = (numTaps - 1u); /* Copy the data */ while(tapCnt > 0u) { *pStateCurnt++ = *pState++; /* Decrement the loop counter */ tapCnt--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ } /** * @} end of LMS group */