/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_mat_trans_f32.c * * Description: Floating-point matrix transpose. * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ /** * @defgroup MatrixTrans Matrix Transpose * * Tranposes a matrix. * Transposing an M x N matrix flips it around the center diagonal and results in an N x M matrix. * \image html MatrixTranspose.gif "Transpose of a 3 x 3 matrix" */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixTrans * @{ */ /** * @brief Floating-point matrix transpose. * @param[in] *pSrc points to the input matrix * @param[out] *pDst points to the output matrix * @return The function returns either ARM_MATH_SIZE_MISMATCH * or ARM_MATH_SUCCESS based on the outcome of size checking. */ arm_status arm_mat_trans_f32( const arm_matrix_instance_f32 * pSrc, arm_matrix_instance_f32 * pDst) { float32_t *pIn = pSrc->pData; /* input data matrix pointer */ float32_t *pOut = pDst->pData; /* output data matrix pointer */ float32_t *px; /* Temporary output data matrix pointer */ uint16_t nRows = pSrc->numRows; /* number of rows */ uint16_t nColumns = pSrc->numCols; /* number of columns */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ uint16_t blkCnt, i = 0u, row = nRows; /* loop counters */ arm_status status; /* status of matrix transpose */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Matrix transpose by exchanging the rows with columns */ /* row loop */ do { /* Loop Unrolling */ blkCnt = nColumns >> 2; /* The pointer px is set to starting address of the column being processed */ px = pOut + i; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) /* column loop */ { /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Decrement the column loop counter */ blkCnt--; } /* Perform matrix transpose for last 3 samples here. */ blkCnt = nColumns % 0x4u; while(blkCnt > 0u) { /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Decrement the column loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ uint16_t col, i = 0u, row = nRows; /* loop counters */ arm_status status; /* status of matrix transpose */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrc->numRows != pDst->numCols) || (pSrc->numCols != pDst->numRows)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { /* Matrix transpose by exchanging the rows with columns */ /* row loop */ do { /* The pointer px is set to starting address of the column being processed */ px = pOut + i; /* Initialize column loop counter */ col = nColumns; while(col > 0u) { /* Read and store the input element in the destination */ *px = *pIn++; /* Update the pointer px to point to the next row of the transposed matrix */ px += nRows; /* Decrement the column loop counter */ col--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ i++; /* Decrement the row loop counter */ row--; } while(row > 0u); /* row loop end */ /* Set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixTrans group */