/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_cfft_radix2_q31.c * * Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" void arm_radix2_butterfly_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier); void arm_radix2_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier); void arm_bitreversal_q31( q31_t * pSrc, uint32_t fftLen, uint16_t bitRevFactor, uint16_t * pBitRevTab); /** * @ingroup groupTransforms */ /** * @addtogroup ComplexFFT * @{ */ /** * @details * @brief Processing function for the fixed-point CFFT/CIFFT. * @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure. * @param[in, out] *pSrc points to the complex data buffer of size 2*fftLen. Processing occurs in-place. * @return none. */ void arm_cfft_radix2_q31( const arm_cfft_radix2_instance_q31 * S, q31_t * pSrc) { if(S->ifftFlag == 1u) { arm_radix2_butterfly_inverse_q31(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } else { arm_radix2_butterfly_q31(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier); } arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable); } /** * @} end of ComplexFFT group */ void arm_radix2_butterfly_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier) { unsigned i, j, k, l, m; unsigned n1, n2, ia; q31_t xt, yt, cosVal, sinVal; q31_t p0, p1; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; l = i + n2; xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u); pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u; yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u; mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multAcc_32x32_keep32_R(p0, yt, sinVal); multSub_32x32_keep32_R(p1, xt, sinVal); pSrc[2u * l] = p0; pSrc[2u * l + 1u] = p1; } // groups loop end twidCoefModifier <<= 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly i = j; m = fftLen / n1; do { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u; mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multAcc_32x32_keep32_R(p0, yt, sinVal); multSub_32x32_keep32_R(p1, xt, sinVal); pSrc[2u * l] = p0; pSrc[2u * l + 1u] = p1; i += n1; m--; } while( m > 0); // butterfly loop end } // groups loop end twidCoefModifier <<= 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; i += n1; l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; } // butterfly loop end } void arm_radix2_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint16_t twidCoefModifier) { unsigned i, j, k, l; unsigned n1, n2, ia; q31_t xt, yt, cosVal, sinVal; q31_t p0, p1; //N = fftLen; n2 = fftLen; n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; l = i + n2; xt = (pSrc[2 * i] >> 2u) - (pSrc[2 * l] >> 2u); pSrc[2 * i] = ((pSrc[2 * i] >> 2u) + (pSrc[2 * l] >> 2u)) >> 1u; yt = (pSrc[2 * i + 1] >> 2u) - (pSrc[2 * l + 1] >> 2u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 2u) + (pSrc[2 * i + 1] >> 2u)) >> 1u; mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multSub_32x32_keep32_R(p0, yt, sinVal); multAcc_32x32_keep32_R(p1, xt, sinVal); pSrc[2u * l] = p0; pSrc[2u * l + 1u] = p1; } // groups loop end twidCoefModifier = twidCoefModifier << 1u; // loop for stage for (k = fftLen / 2; k > 2; k = k >> 1) { n1 = n2; n2 = n2 >> 1; ia = 0; // loop for groups for (j = 0; j < n2; j++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = j; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u; yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u; mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multSub_32x32_keep32_R(p0, yt, sinVal); multAcc_32x32_keep32_R(p1, xt, sinVal); pSrc[2u * l] = p0; pSrc[2u * l + 1u] = p1; } // butterfly loop end } // groups loop end twidCoefModifier = twidCoefModifier << 1u; } // stages loop end n1 = n2; n2 = n2 >> 1; ia = 0; cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia = ia + twidCoefModifier; // loop for butterfly for (i = 0; i < fftLen; i += n1) { l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; i += n1; l = i + n2; xt = pSrc[2 * i] - pSrc[2 * l]; pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]); yt = pSrc[2 * i + 1] - pSrc[2 * l + 1]; pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]); pSrc[2u * l] = xt; pSrc[2u * l + 1u] = yt; } // butterfly loop end }