/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_rfft_q15.c * * Description: RFFT & RIFFT Q15 process function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" void arm_radix4_butterfly_q15( q15_t * pSrc16, uint32_t fftLen, q15_t * pCoef16, uint32_t twidCoefModifier); void arm_radix4_butterfly_inverse_q15( q15_t * pSrc16, uint32_t fftLen, q15_t * pCoef16, uint32_t twidCoefModifier); void arm_bitreversal_q15( q15_t * pSrc, uint32_t fftLen, uint16_t bitRevFactor, uint16_t * pBitRevTab); /*-------------------------------------------------------------------- * Internal functions prototypes --------------------------------------------------------------------*/ void arm_split_rfft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier); void arm_split_rifft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier); /** * @addtogroup RealFFT * @{ */ /** * @brief Processing function for the Q15 RFFT/RIFFT. * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure. * @param[in] *pSrc points to the input buffer. * @param[out] *pDst points to the output buffer. * @return none. * * \par Input an output formats: * \par * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. * Hence the output format is different for different RFFT sizes. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: * \par * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT" * \par * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT" */ void arm_rfft_q15( const arm_rfft_instance_q15 * S, q15_t * pSrc, q15_t * pDst) { const arm_cfft_radix4_instance_q15 *S_CFFT = S->pCfft; /* Calculation of RIFFT of input */ if(S->ifftFlagR == 1u) { /* Real IFFT core process */ arm_split_rifft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); /* Complex readix-4 IFFT process */ arm_radix4_butterfly_inverse_q15(pDst, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_q15(pDst, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } } else { /* Calculation of RFFT of input */ /* Complex readix-4 FFT process */ arm_radix4_butterfly_q15(pSrc, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_q15(pSrc, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } arm_split_rfft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); } } /** * @} end of RealFFT group */ /** * @brief Core Real FFT process * @param *pSrc points to the input buffer. * @param fftLen length of FFT. * @param *pATable points to the A twiddle Coef buffer. * @param *pBTable points to the B twiddle Coef buffer. * @param *pDst points to the output buffer. * @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. * The function implements a Real FFT */ void arm_split_rfft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q15_t *pSrc1, *pSrc2; // pSrc[2u * fftLen] = pSrc[0]; // pSrc[(2u * fftLen) + 1u] = pSrc[1]; pCoefA = &pATable[modifier * 2u]; pCoefB = &pBTable[modifier * 2u]; pSrc1 = &pSrc[2]; pSrc2 = &pSrc[(2u * fftLen) - 2u]; #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ i = 1u; while(i < fftLen) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ #ifndef ARM_MATH_BIG_ENDIAN /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */ outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)); #else /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */ outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA))); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 15u; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ #ifndef ARM_MATH_BIG_ENDIAN outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); #else outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */ outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI); /* write output */ pDst[2u * i] = (q15_t) outR; pDst[(2u * i) + 1u] = outI >> 15u; /* write complex conjugate output */ pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR; pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u); /* update coefficient pointer */ pCoefB = pCoefB + (2u * modifier); pCoefA = pCoefA + (2u * modifier); i++; } pDst[2u * fftLen] = pSrc[0] - pSrc[1]; pDst[(2u * fftLen) + 1u] = 0; pDst[0] = pSrc[0] + pSrc[1]; pDst[1] = 0; #else /* Run the below code for Cortex-M0 */ i = 1u; while(i < fftLen) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ outR = *pSrc1 * *pCoefA; outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1)); outR = outR + (*pSrc2 * *pCoefB); outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 15; /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ outI = *pSrc2 * *(pCoefB + 1); outI = outI - (*(pSrc2 + 1) * *pCoefB); outI = outI + (*(pSrc1 + 1) * *pCoefA); outI = outI + (*pSrc1 * *(pCoefA + 1)); /* update input pointers */ pSrc1 += 2u; pSrc2 -= 2u; /* write output */ pDst[2u * i] = (q15_t) outR; pDst[(2u * i) + 1u] = outI >> 15u; /* write complex conjugate output */ pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR; pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u); /* update coefficient pointer */ pCoefB = pCoefB + (2u * modifier); pCoefA = pCoefA + (2u * modifier); i++; } pDst[2u * fftLen] = pSrc[0] - pSrc[1]; pDst[(2u * fftLen) + 1u] = 0; pDst[0] = pSrc[0] + pSrc[1]; pDst[1] = 0; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ } /** * @brief Core Real IFFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. * The function implements a Real IFFT */ void arm_split_rifft_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pATable, q15_t * pBTable, q15_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q15_t *pSrc1, *pSrc2; q15_t *pDst1 = &pDst[0]; pCoefA = &pATable[0]; pCoefB = &pBTable[0]; pSrc1 = &pSrc[0]; pSrc2 = &pSrc[2u * fftLen]; #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ i = fftLen; while(i > 0u) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ #ifndef ARM_MATH_BIG_ENDIAN /* pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */ outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)); #else /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */ outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB))); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] */ outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 15u; /* -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] + pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB)); /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */ #ifndef ARM_MATH_BIG_ENDIAN outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI); #else outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* write output */ #ifndef ARM_MATH_BIG_ENDIAN *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 15u), 16); #else *__SIMD32(pDst1)++ = __PKHBT((outI >> 15u), outR, 16); #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ /* update coefficient pointer */ pCoefB = pCoefB + (2u * modifier); pCoefA = pCoefA + (2u * modifier); i--; } #else /* Run the below code for Cortex-M0 */ i = fftLen; while(i > 0u) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ outR = *pSrc2 * *pCoefB; outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1)); outR = outR + (*pSrc1 * *pCoefA); outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 15; /* outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ outI = *(pSrc1 + 1) * *pCoefA; outI = outI - (*pSrc1 * *(pCoefA + 1)); outI = outI - (*pSrc2 * *(pCoefB + 1)); outI = outI - (*(pSrc2 + 1) * *(pCoefB)); /* update input pointers */ pSrc1 += 2u; pSrc2 -= 2u; /* write output */ *pDst1++ = (q15_t) outR; *pDst1++ = (q15_t) (outI >> 15); /* update coefficient pointer */ pCoefB = pCoefB + (2u * modifier); pCoefA = pCoefA + (2u * modifier); i--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ }