/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_rfft_q31.c * * Description: RFFT & RIFFT Q31 process function * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" void arm_radix4_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint32_t twidCoefModifier); void arm_radix4_butterfly_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint32_t twidCoefModifier); void arm_bitreversal_q31( q31_t * pSrc, uint32_t fftLen, uint16_t bitRevFactor, uint16_t * pBitRevTab); /*-------------------------------------------------------------------- * Internal functions prototypes --------------------------------------------------------------------*/ void arm_split_rfft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier); void arm_split_rifft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier); /** * @addtogroup RealFFT * @{ */ /** * @brief Processing function for the Q31 RFFT/RIFFT. * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure. * @param[in] *pSrc points to the input buffer. * @param[out] *pDst points to the output buffer. * @return none. * * \par Input an output formats: * \par * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. * Hence the output format is different for different RFFT sizes. * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT: * \par * \image html RFFTQ31.gif "Input and Output Formats for Q31 RFFT" * * \par * \image html RIFFTQ31.gif "Input and Output Formats for Q31 RIFFT" */ void arm_rfft_q31( const arm_rfft_instance_q31 * S, q31_t * pSrc, q31_t * pDst) { const arm_cfft_radix4_instance_q31 *S_CFFT = S->pCfft; /* Calculation of RIFFT of input */ if(S->ifftFlagR == 1u) { /* Real IFFT core process */ arm_split_rifft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); /* Complex readix-4 IFFT process */ arm_radix4_butterfly_inverse_q31(pDst, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_q31(pDst, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } } else { /* Calculation of RFFT of input */ /* Complex readix-4 FFT process */ arm_radix4_butterfly_q31(pSrc, S_CFFT->fftLen, S_CFFT->pTwiddle, S_CFFT->twidCoefModifier); /* Bit reversal process */ if(S->bitReverseFlagR == 1u) { arm_bitreversal_q31(pSrc, S_CFFT->fftLen, S_CFFT->bitRevFactor, S_CFFT->pBitRevTable); } /* Real FFT core process */ arm_split_rfft_q31(pSrc, S->fftLenBy2, S->pTwiddleAReal, S->pTwiddleBReal, pDst, S->twidCoefRModifier); } } /** * @} end of RealFFT group */ /** * @brief Core Real FFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_split_rfft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier) { uint32_t i; /* Loop Counter */ q31_t outR, outI; /* Temporary variables for output */ q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ q31_t *pOut1 = &pDst[2], *pOut2 = &pDst[(4u * fftLen) - 1u]; q31_t *pIn1 = &pSrc[2], *pIn2 = &pSrc[(2u * fftLen) - 1u]; /* Init coefficient pointers */ pCoefA = &pATable[modifier * 2u]; pCoefB = &pBTable[modifier * 2u]; i = fftLen - 1u; while(i > 0u) { /* outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] + pSrc[2 * n - 2 * i] * pBTable[2 * i] + pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); */ /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ CoefA1 = *pCoefA++; CoefA2 = *pCoefA; /* outR = (pSrc[2 * i] * pATable[2 * i] */ outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32)); /* outI = pIn[2 * i] * pATable[2 * i + 1] */ outI = ((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32)); /* - pSrc[2 * i + 1] * pATable[2 * i + 1] */ outR = (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (-CoefA2))) >> 32); /* (pIn[2 * i + 1] * pATable[2 * i] */ outI = (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32); /* pSrc[2 * n - 2 * i] * pBTable[2 * i] */ outR = (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (-CoefA2))) >> 32); CoefB1 = *pCoefB; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */ outI = (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefB1))) >> 32); /* pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */ outR = (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32); /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ outI = (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (-CoefA2))) >> 32); /* write output */ *pOut1++ = (outR << 1u); *pOut1++ = (outI << 1u); /* write complex conjugate output */ *pOut2-- = -(outI << 1u); *pOut2-- = (outR << 1u); /* update coefficient pointer */ pCoefB = pCoefB + (modifier * 2u); pCoefA = pCoefA + ((modifier * 2u) - 1u); i--; } pDst[2u * fftLen] = pSrc[0] - pSrc[1]; pDst[(2u * fftLen) + 1u] = 0; pDst[0] = pSrc[0] + pSrc[1]; pDst[1] = 0; } /** * @brief Core Real IFFT process * @param[in] *pSrc points to the input buffer. * @param[in] fftLen length of FFT. * @param[in] *pATable points to the twiddle Coef A buffer. * @param[in] *pBTable points to the twiddle Coef B buffer. * @param[out] *pDst points to the output buffer. * @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. * @return none. */ void arm_split_rifft_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pATable, q31_t * pBTable, q31_t * pDst, uint32_t modifier) { q31_t outR, outI; /* Temporary variables for output */ q31_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */ q31_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */ q31_t *pIn1 = &pSrc[0], *pIn2 = &pSrc[(2u * fftLen) + 1u]; pCoefA = &pATable[0]; pCoefB = &pBTable[0]; while(fftLen > 0u) { /* outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] + pIn[2 * n - 2 * i] * pBTable[2 * i] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]); outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] - pIn[2 * n - 2 * i] * pBTable[2 * i + 1] - pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */ CoefA1 = *pCoefA++; CoefA2 = *pCoefA; /* outR = (pIn[2 * i] * pATable[2 * i] */ outR = ((int32_t) (((q63_t) * pIn1 * CoefA1) >> 32)); /* - pIn[2 * i] * pATable[2 * i + 1] */ outI = -((int32_t) (((q63_t) * pIn1++ * CoefA2) >> 32)); /* pIn[2 * i + 1] * pATable[2 * i + 1] */ outR = (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn1 * (CoefA2))) >> 32); /* pIn[2 * i + 1] * pATable[2 * i] */ outI = (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn1++ * (CoefA1))) >> 32); /* pIn[2 * n - 2 * i] * pBTable[2 * i] */ outR = (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefA2))) >> 32); CoefB1 = *pCoefB; /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] */ outI = (q31_t) ((((q63_t) outI << 32) - ((q63_t) * pIn2-- * (CoefB1))) >> 32); /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1] */ outR = (q31_t) ((((q63_t) outR << 32) + ((q63_t) * pIn2 * (CoefB1))) >> 32); /* pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */ outI = (q31_t) ((((q63_t) outI << 32) + ((q63_t) * pIn2-- * (CoefA2))) >> 32); /* write output */ *pDst++ = (outR << 1u); *pDst++ = (outI << 1u); /* update coefficient pointer */ pCoefB = pCoefB + (modifier * 2u); pCoefA = pCoefA + ((modifier * 2u) - 1u); /* Decrement loop count */ fftLen--; } }