/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "analogin_api.h" #include "cmsis.h" #include "pinmap.h" #define ANALOGIN_MEDIAN_FILTER 1 #define ADC_10BIT_RANGE 0x3FF #define ADC_12BIT_RANGE 0xFFF #define ADC_RANGE ADC_12BIT_RANGE static const PinMap PinMap_ADC[] = { {P0_8 , ADC0_0, 0}, {P0_7 , ADC0_1, 0}, {P0_6 , ADC0_2, 0}, {P0_5 , ADC0_3, 0}, {P0_4 , ADC0_4, 0}, {P0_3 , ADC0_5, 0}, {P0_2 , ADC0_6, 0}, {P0_1 , ADC0_7, 0}, {P1_0 , ADC0_8, 0}, {P0_31, ADC0_9, 0}, {P0_0 , ADC0_10,0}, {P0_30, ADC0_11,0}, {P1_1 , ADC1_0, 0}, {P0_9 , ADC1_1, 0}, {P0_10, ADC1_2, 0}, {P0_11, ADC1_3, 0}, {P1_2 , ADC1_4, 0}, {P1_3 , ADC1_5, 0}, {P0_13, ADC1_6, 0}, {P0_14, ADC1_7, 0}, {P0_15, ADC1_8, 0}, {P0_16, ADC1_9, 0}, {P1_4 , ADC1_10,0}, {P1_5 , ADC1_11,0}, }; void analogin_init(analogin_t *obj, PinName pin) { obj->adc = (ADCName)pinmap_peripheral(pin, PinMap_ADC); MBED_ASSERT(obj->adc != (ADCName)NC); uint32_t port = (pin >> 5); // enable clock for GPIOx LPC_SYSCON->SYSAHBCLKCTRL0 |= (1UL << (14 + port)); // pin enable LPC_SWM->PINENABLE0 &= ~(1UL << obj->adc); // configure GPIO as input LPC_GPIO_PORT->DIR[port] &= ~(1UL << (pin & 0x1F)); // power up ADC if (obj->adc < ADC1_0) { // ADC0 LPC_SYSCON->PDRUNCFG &= ~(1 << 10); LPC_SYSCON->SYSAHBCLKCTRL0 |= (1 << 27); } else { // ADC1 LPC_SYSCON->PDRUNCFG &= ~(1 << 11); LPC_SYSCON->SYSAHBCLKCTRL0 |= (1 << 28); } // select IRC as asynchronous clock, divided by 1 LPC_SYSCON->ADCASYNCCLKSEL = 0; LPC_SYSCON->ADCASYNCCLKDIV = 1; __IO LPC_ADC0_Type *adc_reg = (obj->adc < ADC1_0) ? (__IO LPC_ADC0_Type*)(LPC_ADC0) : (__IO LPC_ADC0_Type*)(LPC_ADC1); // determine the system clock divider for a 500kHz ADC clock during calibration uint32_t clkdiv = (SystemCoreClock / 500000) - 1; // perform a self-calibration adc_reg->CTRL = (1UL << 30) | (clkdiv & 0xFF); while ((adc_reg->CTRL & (1UL << 30)) != 0); // switch to asynchronous mode adc_reg->CTRL = (1UL << 8); } static inline uint32_t adc_read(analogin_t *obj) { uint32_t channels; __IO LPC_ADC0_Type *adc_reg = (obj->adc < ADC1_0) ? (__IO LPC_ADC0_Type*)(LPC_ADC0) : (__IO LPC_ADC0_Type*)(LPC_ADC1); if (obj->adc >= ADC1_0) channels = ((obj->adc - ADC1_0) & 0x1F); else channels = (obj->adc & 0x1F); // select channel adc_reg->SEQA_CTRL &= ~(0xFFF); adc_reg->SEQA_CTRL |= (1UL << channels); // start conversion and sequence enable adc_reg->SEQA_CTRL |= ((1UL << 26) | (1UL << 31)); // Repeatedly get the sample data until DONE bit volatile uint32_t data; do { data = adc_reg->SEQA_GDAT; } while ((data & (1UL << 31)) == 0); // Stop conversion adc_reg->SEQA_CTRL &= ~(1UL << 31); return ((data >> 4) & ADC_RANGE); } static inline void order(uint32_t *a, uint32_t *b) { if (*a > *b) { uint32_t t = *a; *a = *b; *b = t; } } static inline uint32_t adc_read_u32(analogin_t *obj) { uint32_t value; #if ANALOGIN_MEDIAN_FILTER uint32_t v1 = adc_read(obj); uint32_t v2 = adc_read(obj); uint32_t v3 = adc_read(obj); order(&v1, &v2); order(&v2, &v3); order(&v1, &v2); value = v2; #else value = adc_read(obj); #endif return value; } uint16_t analogin_read_u16(analogin_t *obj) { uint32_t value = adc_read_u32(obj); return (value << 4) | ((value >> 8) & 0x000F); // 12 bit } float analogin_read(analogin_t *obj) { uint32_t value = adc_read_u32(obj); return (float)value * (1.0f / (float)ADC_RANGE); }