/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "serial_api.h" #if DEVICE_SERIAL #include "cmsis.h" #include "pinmap.h" #include #include "PeripheralPins.h" #define UART_NUM (5) static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0, 0, 0}; static uart_irq_handler irq_handler; UART_HandleTypeDef UartHandle; int stdio_uart_inited = 0; serial_t stdio_uart; static void init_uart(serial_t *obj) { UartHandle.Instance = (USART_TypeDef *)(obj->uart); UartHandle.Init.BaudRate = obj->baudrate; UartHandle.Init.WordLength = obj->databits; UartHandle.Init.StopBits = obj->stopbits; UartHandle.Init.Parity = obj->parity; UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE; if (obj->pin_rx == NC) { UartHandle.Init.Mode = UART_MODE_TX; } else if (obj->pin_tx == NC) { UartHandle.Init.Mode = UART_MODE_RX; } else { UartHandle.Init.Mode = UART_MODE_TX_RX; } // Disable the reception overrun detection UartHandle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_RXOVERRUNDISABLE_INIT; UartHandle.AdvancedInit.OverrunDisable = UART_ADVFEATURE_OVERRUN_DISABLE; HAL_UART_Init(&UartHandle); } void serial_init(serial_t *obj, PinName tx, PinName rx) { // Determine the UART to use (UART_1, UART_2, ...) UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT(obj->uart != (UARTName)NC); // Enable USART clock + switch to SystemClock if (obj->uart == UART_1) { __USART1_CLK_ENABLE(); __HAL_RCC_USART1_CONFIG(RCC_USART1CLKSOURCE_SYSCLK); obj->index = 0; } if (obj->uart == UART_2) { __USART2_CLK_ENABLE(); __HAL_RCC_USART2_CONFIG(RCC_USART2CLKSOURCE_SYSCLK); obj->index = 1; } if (obj->uart == UART_3) { __USART3_CLK_ENABLE(); __HAL_RCC_USART3_CONFIG(RCC_USART3CLKSOURCE_SYSCLK); obj->index = 2; } #if defined(UART4_BASE) if (obj->uart == UART_4) { __UART4_CLK_ENABLE(); __HAL_RCC_UART4_CONFIG(RCC_UART4CLKSOURCE_SYSCLK); obj->index = 3; } #endif #if defined(UART5_BASE) if (obj->uart == UART_5) { __UART5_CLK_ENABLE(); __HAL_RCC_UART5_CONFIG(RCC_UART5CLKSOURCE_SYSCLK); obj->index = 4; } #endif // Configure the UART pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } // Configure UART obj->baudrate = 9600; obj->databits = UART_WORDLENGTH_8B; obj->stopbits = UART_STOPBITS_1; obj->parity = UART_PARITY_NONE; obj->pin_tx = tx; obj->pin_rx = rx; init_uart(obj); // For stdio management if (obj->uart == STDIO_UART) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { // Reset UART and disable clock if (obj->uart == UART_1) { __USART1_FORCE_RESET(); __USART1_RELEASE_RESET(); __USART1_CLK_DISABLE(); } if (obj->uart == UART_2) { __USART2_FORCE_RESET(); __USART2_RELEASE_RESET(); __USART2_CLK_DISABLE(); } if (obj->uart == UART_3) { __USART3_FORCE_RESET(); __USART3_RELEASE_RESET(); __USART3_CLK_DISABLE(); } #if defined(UART4_BASE) if (obj->uart == UART_4) { __UART4_FORCE_RESET(); __UART4_RELEASE_RESET(); __UART4_CLK_DISABLE(); } #endif #if defined(UART5_BASE) if (obj->uart == UART_5) { __UART5_FORCE_RESET(); __UART5_RELEASE_RESET(); __UART5_CLK_DISABLE(); } #endif // Configure GPIOs pin_function(obj->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); serial_irq_ids[obj->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { obj->baudrate = baudrate; init_uart(obj); } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { if (data_bits == 9) { obj->databits = UART_WORDLENGTH_9B; } else { obj->databits = UART_WORDLENGTH_8B; } switch (parity) { case ParityOdd: case ParityForced0: obj->parity = UART_PARITY_ODD; break; case ParityEven: case ParityForced1: obj->parity = UART_PARITY_EVEN; break; default: // ParityNone obj->parity = UART_PARITY_NONE; break; } if (stop_bits == 2) { obj->stopbits = UART_STOPBITS_2; } else { obj->stopbits = UART_STOPBITS_1; } init_uart(obj); } /****************************************************************************** * INTERRUPTS HANDLING ******************************************************************************/ static void uart_irq(UARTName name, int id) { UartHandle.Instance = (USART_TypeDef *)name; if (serial_irq_ids[id] != 0) { if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TC) != RESET) { irq_handler(serial_irq_ids[id], TxIrq); __HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC); } if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) { irq_handler(serial_irq_ids[id], RxIrq); volatile uint32_t tmpval = UartHandle.Instance->RDR; // Clear RXNE bit } } } static void uart1_irq(void) { uart_irq(UART_1, 0); } static void uart2_irq(void) { uart_irq(UART_2, 1); } static void uart3_irq(void) { uart_irq(UART_3, 2); } #if defined(UART4_BASE) static void uart4_irq(void) { uart_irq(UART_4, 3); } #endif #if defined(UART5_BASE) static void uart5_irq(void) { uart_irq(UART_5, 4); } #endif void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) { irq_handler = handler; serial_irq_ids[obj->index] = id; } void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) { IRQn_Type irq_n = (IRQn_Type)0; uint32_t vector = 0; UartHandle.Instance = (USART_TypeDef *)(obj->uart); if (obj->uart == UART_1) { irq_n = USART1_IRQn; vector = (uint32_t)&uart1_irq; } if (obj->uart == UART_2) { irq_n = USART2_IRQn; vector = (uint32_t)&uart2_irq; } if (obj->uart == UART_3) { irq_n = USART3_IRQn; vector = (uint32_t)&uart3_irq; } #if defined(UART4_BASE) if (obj->uart == UART_4) { irq_n = UART4_IRQn; vector = (uint32_t)&uart4_irq; } #endif #if defined(UART5_BASE) if (obj->uart == UART_5) { irq_n = UART5_IRQn; vector = (uint32_t)&uart5_irq; } #endif if (enable) { if (irq == RxIrq) { __HAL_UART_ENABLE_IT(&UartHandle, UART_IT_RXNE); } else { // TxIrq __HAL_UART_ENABLE_IT(&UartHandle, UART_IT_TC); } NVIC_SetVector(irq_n, vector); NVIC_EnableIRQ(irq_n); } else { // disable int all_disabled = 0; if (irq == RxIrq) { __HAL_UART_DISABLE_IT(&UartHandle, UART_IT_RXNE); // Check if TxIrq is disabled too if ((UartHandle.Instance->CR1 & USART_CR1_TCIE) == 0) all_disabled = 1; } else { // TxIrq __HAL_UART_DISABLE_IT(&UartHandle, UART_IT_TC); // Check if RxIrq is disabled too if ((UartHandle.Instance->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1; } if (all_disabled) NVIC_DisableIRQ(irq_n); } } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_getc(serial_t *obj) { USART_TypeDef *uart = (USART_TypeDef *)(obj->uart); while (!serial_readable(obj)); if (obj->databits == UART_WORDLENGTH_8B) { return (int)(uart->RDR & (uint8_t)0xFF); } else { return (int)(uart->RDR & (uint16_t)0x1FF); } } void serial_putc(serial_t *obj, int c) { USART_TypeDef *uart = (USART_TypeDef *)(obj->uart); while (!serial_writable(obj)); if (obj->databits == UART_WORDLENGTH_8B) { uart->TDR = (uint8_t)(c & (uint8_t)0xFF); } else { uart->TDR = (uint16_t)(c & (uint16_t)0x1FF); } } int serial_readable(serial_t *obj) { int status; UartHandle.Instance = (USART_TypeDef *)(obj->uart); // Check if data is received status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) ? 1 : 0); return status; } int serial_writable(serial_t *obj) { int status; UartHandle.Instance = (USART_TypeDef *)(obj->uart); // Check if data is transmitted status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TXE) != RESET) ? 1 : 0); return status; } void serial_clear(serial_t *obj) { UartHandle.Instance = (USART_TypeDef *)(obj->uart); __HAL_UART_CLEAR_IT(&UartHandle, UART_FLAG_TC); __HAL_UART_SEND_REQ(&UartHandle, UART_RXDATA_FLUSH_REQUEST); } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_set(serial_t *obj) { UartHandle.Instance = (USART_TypeDef *)(obj->uart); HAL_LIN_SendBreak(&UartHandle); } void serial_break_clear(serial_t *obj) { } #endif