/* mbed Microcontroller Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mbed_assert.h" #include "spi_api.h" #if DEVICE_SPI #include #include "cmsis.h" #include "pinmap.h" static const PinMap PinMap_SPI_SCLK[] = { {PA_5, SPI_1, STM_PIN_DATA(2, 5)}, {PB_3, SPI_1, STM_PIN_DATA(2, 5)}, {PB_3, SPI_3, STM_PIN_DATA(2, 6)}, {PB_10, SPI_2, STM_PIN_DATA(2, 5)}, {PB_13, SPI_2, STM_PIN_DATA(2, 5)}, {PC_10, SPI_3, STM_PIN_DATA(2, 6)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_MOSI[] = { {PA_7, SPI_1, STM_PIN_DATA(2, 5)}, {PB_5, SPI_1, STM_PIN_DATA(2, 5)}, {PB_5, SPI_3, STM_PIN_DATA(2, 6)}, {PB_15, SPI_2, STM_PIN_DATA(2, 5)}, {PC_3, SPI_2, STM_PIN_DATA(2, 5)}, {PC_12, SPI_3, STM_PIN_DATA(2, 6)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_MISO[] = { {PA_6, SPI_1, STM_PIN_DATA(2, 5)}, {PB_4, SPI_1, STM_PIN_DATA(2, 5)}, {PB_4, SPI_3, STM_PIN_DATA(2, 6)}, {PB_14, SPI_2, STM_PIN_DATA(2, 5)}, {PC_2, SPI_2, STM_PIN_DATA(2, 5)}, {PC_11, SPI_3, STM_PIN_DATA(2, 6)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_SSEL[] = { {PA_4, SPI_1, STM_PIN_DATA(2, 5)}, {PA_4, SPI_3, STM_PIN_DATA(2, 6)}, {PA_15, SPI_1, STM_PIN_DATA(2, 5)}, {PA_15, SPI_3, STM_PIN_DATA(2, 6)}, {PB_9, SPI_2, STM_PIN_DATA(2, 5)}, {PB_12, SPI_2, STM_PIN_DATA(2, 5)}, {NC, NC, 0} }; static inline int ssp_disable(spi_t *obj); static inline int ssp_enable(spi_t *obj); void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (SPI_TypeDef*)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT((int)obj->spi != NC); // enable power and clocking switch ((int)obj->spi) { case SPI_1: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN; RCC->APB2ENR |= RCC_APB2ENR_SPI1EN; break; case SPI_2: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN; RCC->APB1ENR |= RCC_APB1ENR_SPI2EN; break; case SPI_3: RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN; RCC->APB1ENR |= RCC_APB1ENR_SPI3EN; break; } // set default format and frequency if (ssel == NC) { spi_format(obj, 8, 0, 0); // 8 bits, mode 0, master } else { spi_format(obj, 8, 0, 1); // 8 bits, mode 0, slave } spi_frequency(obj, 1000000); // enable the ssp channel ssp_enable(obj); // pin out the spi pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); if (ssel != NC) { pinmap_pinout(ssel, PinMap_SPI_SSEL); } else { // Use software slave management obj->spi->CR1 |= SPI_CR1_SSM | SPI_CR1_SSI; } } void spi_free(spi_t *obj) {} void spi_format(spi_t *obj, int bits, int mode, int slave) { MBED_ASSERT(((bits == 8) || (bits == 16)) && ((mode >= 0) && (mode <= 3))); ssp_disable(obj); int polarity = (mode & 0x2) ? 1 : 0; int phase = (mode & 0x1) ? 1 : 0; obj->spi->CR1 &= ~0x807; obj->spi->CR1 |= ((phase) ? 1 : 0) << 0 | ((polarity) ? 1 : 0) << 1 | ((slave) ? 0: 1) << 2 | ((bits == 16) ? 1 : 0) << 11; if (obj->spi->SR & SPI_SR_MODF) { obj->spi->CR1 = obj->spi->CR1; } ssp_enable(obj); } void spi_frequency(spi_t *obj, int hz) { ssp_disable(obj); // SPI1 runs from PCLK2, which runs at SystemCoreClock / 2. SPI2 and SPI3 // run from PCLK1, which runs at SystemCoreClock / 4. uint32_t PCLK = SystemCoreClock; switch ((int)obj->spi) { case SPI_1: PCLK = PCLK >> 1; break; case SPI_2: PCLK = PCLK >> 2; break; case SPI_3: PCLK = PCLK >> 2; break; } // Choose the baud rate divisor (between 2 and 256) uint32_t divisor = PCLK / hz; // Find the nearest power-of-2 divisor = divisor > 0 ? divisor-1 : 0; divisor |= divisor >> 1; divisor |= divisor >> 2; divisor |= divisor >> 4; divisor |= divisor >> 8; divisor |= divisor >> 16; divisor++; uint32_t baud_rate = __builtin_ffs(divisor) - 1; baud_rate = baud_rate > 0x7 ? 0x7 : baud_rate; obj->spi->CR1 &= ~(0x7 << 3); obj->spi->CR1 |= baud_rate << 3; ssp_enable(obj); } static inline int ssp_disable(spi_t *obj) { // TODO: Follow the instructions in 25.3.8 for safely disabling the SPI return obj->spi->CR1 &= ~SPI_CR1_SPE; } static inline int ssp_enable(spi_t *obj) { return obj->spi->CR1 |= SPI_CR1_SPE; } static inline int ssp_readable(spi_t *obj) { return obj->spi->SR & SPI_SR_RXNE; } static inline int ssp_writeable(spi_t *obj) { return obj->spi->SR & SPI_SR_TXE; } static inline void ssp_write(spi_t *obj, int value) { while (!ssp_writeable(obj)); obj->spi->DR = value; } static inline int ssp_read(spi_t *obj) { while (!ssp_readable(obj)); return obj->spi->DR; } static inline int ssp_busy(spi_t *obj) { return (obj->spi->SR & SPI_SR_BSY) ? (1) : (0); } int spi_master_write(spi_t *obj, int value) { ssp_write(obj, value); return ssp_read(obj); } int spi_slave_receive(spi_t *obj) { return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0); }; int spi_slave_read(spi_t *obj) { return obj->spi->DR; } void spi_slave_write(spi_t *obj, int value) { while (ssp_writeable(obj) == 0) ; obj->spi->DR = value; } int spi_busy(spi_t *obj) { return ssp_busy(obj); } #endif