/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2014, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #include "mbed_assert.h" #include "spi_api.h" #if DEVICE_SPI #include #include "cmsis.h" #include "pinmap.h" static const PinMap PinMap_SPI_MOSI[] = { {PA_11, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {PB_5, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {PB_15, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {PC_12, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_MISO[] = { {PA_10, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {PB_4, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {PB_14, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {PC_11, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_SCLK[] = { {PB_3, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {PB_13, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {PC_10, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {PF_1, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {NC, NC, 0} }; static const PinMap PinMap_SPI_SSEL[] = { {PA_4, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {PA_15, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_6)}, {PB_12, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {PF_0, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_DOWN, GPIO_AF_5)}, {NC, NC, 0} }; static void init_spi(spi_t *obj) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_InitTypeDef SPI_InitStructure; SPI_Cmd(spi, DISABLE); SPI_InitStructure.SPI_Mode = obj->mode; SPI_InitStructure.SPI_NSS = obj->nss; SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_DataSize = obj->bits; SPI_InitStructure.SPI_CPOL = obj->cpol; SPI_InitStructure.SPI_CPHA = obj->cpha; SPI_InitStructure.SPI_BaudRatePrescaler = obj->br_presc; SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; SPI_InitStructure.SPI_CRCPolynomial = 7; SPI_Init(spi, &SPI_InitStructure); SPI_RxFIFOThresholdConfig(spi, SPI_RxFIFOThreshold_QF); SPI_Cmd(spi, ENABLE); } void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) { // Determine the SPI to use SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI); SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO); SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK); SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL); SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso); SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel); obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl); MBED_ASSERT(obj->spi != (SPIName)NC); // Enable SPI clock if (obj->spi == SPI_2) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); } if (obj->spi == SPI_3) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE); } // Configure the SPI pins pinmap_pinout(mosi, PinMap_SPI_MOSI); pinmap_pinout(miso, PinMap_SPI_MISO); pinmap_pinout(sclk, PinMap_SPI_SCLK); // Save new values obj->bits = SPI_DataSize_8b; obj->cpol = SPI_CPOL_Low; obj->cpha = SPI_CPHA_1Edge; obj->br_presc = SPI_BaudRatePrescaler_256; if (ssel == NC) { // Master obj->mode = SPI_Mode_Master; obj->nss = SPI_NSS_Soft; } else { // Slave pinmap_pinout(ssel, PinMap_SPI_SSEL); obj->mode = SPI_Mode_Slave; obj->nss = SPI_NSS_Soft; } init_spi(obj); } void spi_free(spi_t *obj) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); SPI_I2S_DeInit(spi); } void spi_format(spi_t *obj, int bits, int mode, int slave) { // Save new values if (bits == 8) { obj->bits = SPI_DataSize_8b; } else { obj->bits = SPI_DataSize_16b; } switch (mode) { case 0: obj->cpol = SPI_CPOL_Low; obj->cpha = SPI_CPHA_1Edge; break; case 1: obj->cpol = SPI_CPOL_Low; obj->cpha = SPI_CPHA_2Edge; break; case 2: obj->cpol = SPI_CPOL_High; obj->cpha = SPI_CPHA_1Edge; break; default: obj->cpol = SPI_CPOL_High; obj->cpha = SPI_CPHA_2Edge; break; } if (slave == 0) { obj->mode = SPI_Mode_Master; obj->nss = SPI_NSS_Soft; } else { obj->mode = SPI_Mode_Slave; obj->nss = SPI_NSS_Hard; } init_spi(obj); } void spi_frequency(spi_t *obj, int hz) { // Values depend of PCLK1: 32 MHz if HSI is used, 36 MHz if HSE is used if (hz < 250000) { obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz - 141 kHz } else if ((hz >= 250000) && (hz < 500000)) { obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz - 280 kHz } else if ((hz >= 500000) && (hz < 1000000)) { obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz - 560 kHz } else if ((hz >= 1000000) && (hz < 2000000)) { obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz - 1.13 MHz } else if ((hz >= 2000000) && (hz < 4000000)) { obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz - 2.25 MHz } else if ((hz >= 4000000) && (hz < 8000000)) { obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz - 4.5 MHz } else if ((hz >= 8000000) && (hz < 16000000)) { obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz - 9 MHz } else { // >= 16000000 obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz - 18 MHz } init_spi(obj); } static inline int ssp_readable(spi_t *obj) { int status; SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); // Check if data is received status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_RXNE) != RESET) ? 1 : 0); return status; } static inline int ssp_writeable(spi_t *obj) { int status; SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); // Check if data is transmitted status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_TXE) != RESET) ? 1 : 0); return status; } static inline void ssp_write(spi_t *obj, int value) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_writeable(obj)); if (obj->bits == SPI_DataSize_8b) { SPI_SendData8(spi, (uint8_t)value); } else { SPI_I2S_SendData16(spi, (uint16_t)value); } } static inline int ssp_read(spi_t *obj) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_readable(obj)); if (obj->bits == SPI_DataSize_8b) { return (int)SPI_ReceiveData8(spi); } else { return (int)SPI_I2S_ReceiveData16(spi); } } static inline int ssp_busy(spi_t *obj) { int status; SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_BSY) != RESET) ? 1 : 0); return status; } int spi_master_write(spi_t *obj, int value) { ssp_write(obj, value); return ssp_read(obj); } int spi_slave_receive(spi_t *obj) { return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0); }; int spi_slave_read(spi_t *obj) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); if (obj->bits == SPI_DataSize_8b) { return (int)SPI_ReceiveData8(spi); } else { return (int)SPI_I2S_ReceiveData16(spi); } } void spi_slave_write(spi_t *obj, int value) { SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi); while (!ssp_writeable(obj)); if (obj->bits == SPI_DataSize_8b) { SPI_SendData8(spi, (uint8_t)value); } else { SPI_I2S_SendData16(spi, (uint16_t)value); } } int spi_busy(spi_t *obj) { return ssp_busy(obj); } #endif