]> git.gir.st - tmk_keyboard.git/blob - tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_correlate_q7.c
Squashed 'tmk_core/' changes from 7967731..b9e0ea0
[tmk_keyboard.git] / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_correlate_q7.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_correlate_q7.c
9 *
10 * Description: Correlation of Q7 sequences.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup Corr
49 * @{
50 */
51
52 /**
53 * @brief Correlation of Q7 sequences.
54 * @param[in] *pSrcA points to the first input sequence.
55 * @param[in] srcALen length of the first input sequence.
56 * @param[in] *pSrcB points to the second input sequence.
57 * @param[in] srcBLen length of the second input sequence.
58 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
59 * @return none.
60 *
61 * @details
62 * <b>Scaling and Overflow Behavior:</b>
63 *
64 * \par
65 * The function is implemented using a 32-bit internal accumulator.
66 * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
67 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
68 * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
69 * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and saturated to 1.7 format.
70 *
71 * \par
72 * Refer the function <code>arm_correlate_opt_q7()</code> for a faster implementation of this function.
73 *
74 */
75
76 void arm_correlate_q7(
77 q7_t * pSrcA,
78 uint32_t srcALen,
79 q7_t * pSrcB,
80 uint32_t srcBLen,
81 q7_t * pDst)
82 {
83
84
85 #ifndef ARM_MATH_CM0_FAMILY
86
87 /* Run the below code for Cortex-M4 and Cortex-M3 */
88
89 q7_t *pIn1; /* inputA pointer */
90 q7_t *pIn2; /* inputB pointer */
91 q7_t *pOut = pDst; /* output pointer */
92 q7_t *px; /* Intermediate inputA pointer */
93 q7_t *py; /* Intermediate inputB pointer */
94 q7_t *pSrc1; /* Intermediate pointers */
95 q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */
96 q31_t input1, input2; /* temporary variables */
97 q15_t in1, in2; /* temporary variables */
98 q7_t x0, x1, x2, x3, c0, c1; /* temporary variables for holding input and coefficient values */
99 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counter */
100 int32_t inc = 1;
101
102
103 /* The algorithm implementation is based on the lengths of the inputs. */
104 /* srcB is always made to slide across srcA. */
105 /* So srcBLen is always considered as shorter or equal to srcALen */
106 /* But CORR(x, y) is reverse of CORR(y, x) */
107 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
108 /* and the destination pointer modifier, inc is set to -1 */
109 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
110 /* But to improve the performance,
111 * we include zeroes in the output instead of zero padding either of the the inputs*/
112 /* If srcALen > srcBLen,
113 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
114 /* If srcALen < srcBLen,
115 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
116 if(srcALen >= srcBLen)
117 {
118 /* Initialization of inputA pointer */
119 pIn1 = (pSrcA);
120
121 /* Initialization of inputB pointer */
122 pIn2 = (pSrcB);
123
124 /* Number of output samples is calculated */
125 outBlockSize = (2u * srcALen) - 1u;
126
127 /* When srcALen > srcBLen, zero padding is done to srcB
128 * to make their lengths equal.
129 * Instead, (outBlockSize - (srcALen + srcBLen - 1))
130 * number of output samples are made zero */
131 j = outBlockSize - (srcALen + (srcBLen - 1u));
132
133 /* Updating the pointer position to non zero value */
134 pOut += j;
135
136 }
137 else
138 {
139 /* Initialization of inputA pointer */
140 pIn1 = (pSrcB);
141
142 /* Initialization of inputB pointer */
143 pIn2 = (pSrcA);
144
145 /* srcBLen is always considered as shorter or equal to srcALen */
146 j = srcBLen;
147 srcBLen = srcALen;
148 srcALen = j;
149
150 /* CORR(x, y) = Reverse order(CORR(y, x)) */
151 /* Hence set the destination pointer to point to the last output sample */
152 pOut = pDst + ((srcALen + srcBLen) - 2u);
153
154 /* Destination address modifier is set to -1 */
155 inc = -1;
156
157 }
158
159 /* The function is internally
160 * divided into three parts according to the number of multiplications that has to be
161 * taken place between inputA samples and inputB samples. In the first part of the
162 * algorithm, the multiplications increase by one for every iteration.
163 * In the second part of the algorithm, srcBLen number of multiplications are done.
164 * In the third part of the algorithm, the multiplications decrease by one
165 * for every iteration.*/
166 /* The algorithm is implemented in three stages.
167 * The loop counters of each stage is initiated here. */
168 blockSize1 = srcBLen - 1u;
169 blockSize2 = srcALen - (srcBLen - 1u);
170 blockSize3 = blockSize1;
171
172 /* --------------------------
173 * Initializations of stage1
174 * -------------------------*/
175
176 /* sum = x[0] * y[srcBlen - 1]
177 * sum = x[0] * y[srcBlen - 2] + x[1] * y[srcBlen - 1]
178 * ....
179 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]
180 */
181
182 /* In this stage the MAC operations are increased by 1 for every iteration.
183 The count variable holds the number of MAC operations performed */
184 count = 1u;
185
186 /* Working pointer of inputA */
187 px = pIn1;
188
189 /* Working pointer of inputB */
190 pSrc1 = pIn2 + (srcBLen - 1u);
191 py = pSrc1;
192
193 /* ------------------------
194 * Stage1 process
195 * ----------------------*/
196
197 /* The first stage starts here */
198 while(blockSize1 > 0u)
199 {
200 /* Accumulator is made zero for every iteration */
201 sum = 0;
202
203 /* Apply loop unrolling and compute 4 MACs simultaneously. */
204 k = count >> 2;
205
206 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
207 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
208 while(k > 0u)
209 {
210 /* x[0] , x[1] */
211 in1 = (q15_t) * px++;
212 in2 = (q15_t) * px++;
213 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
214
215 /* y[srcBLen - 4] , y[srcBLen - 3] */
216 in1 = (q15_t) * py++;
217 in2 = (q15_t) * py++;
218 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
219
220 /* x[0] * y[srcBLen - 4] */
221 /* x[1] * y[srcBLen - 3] */
222 sum = __SMLAD(input1, input2, sum);
223
224 /* x[2] , x[3] */
225 in1 = (q15_t) * px++;
226 in2 = (q15_t) * px++;
227 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
228
229 /* y[srcBLen - 2] , y[srcBLen - 1] */
230 in1 = (q15_t) * py++;
231 in2 = (q15_t) * py++;
232 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
233
234 /* x[2] * y[srcBLen - 2] */
235 /* x[3] * y[srcBLen - 1] */
236 sum = __SMLAD(input1, input2, sum);
237
238
239 /* Decrement the loop counter */
240 k--;
241 }
242
243 /* If the count is not a multiple of 4, compute any remaining MACs here.
244 ** No loop unrolling is used. */
245 k = count % 0x4u;
246
247 while(k > 0u)
248 {
249 /* Perform the multiply-accumulates */
250 /* x[0] * y[srcBLen - 1] */
251 sum += (q31_t) ((q15_t) * px++ * *py++);
252
253 /* Decrement the loop counter */
254 k--;
255 }
256
257 /* Store the result in the accumulator in the destination buffer. */
258 *pOut = (q7_t) (__SSAT(sum >> 7, 8));
259 /* Destination pointer is updated according to the address modifier, inc */
260 pOut += inc;
261
262 /* Update the inputA and inputB pointers for next MAC calculation */
263 py = pSrc1 - count;
264 px = pIn1;
265
266 /* Increment the MAC count */
267 count++;
268
269 /* Decrement the loop counter */
270 blockSize1--;
271 }
272
273 /* --------------------------
274 * Initializations of stage2
275 * ------------------------*/
276
277 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]
278 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]
279 * ....
280 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
281 */
282
283 /* Working pointer of inputA */
284 px = pIn1;
285
286 /* Working pointer of inputB */
287 py = pIn2;
288
289 /* count is index by which the pointer pIn1 to be incremented */
290 count = 0u;
291
292 /* -------------------
293 * Stage2 process
294 * ------------------*/
295
296 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
297 * So, to loop unroll over blockSize2,
298 * srcBLen should be greater than or equal to 4 */
299 if(srcBLen >= 4u)
300 {
301 /* Loop unroll over blockSize2, by 4 */
302 blkCnt = blockSize2 >> 2u;
303
304 while(blkCnt > 0u)
305 {
306 /* Set all accumulators to zero */
307 acc0 = 0;
308 acc1 = 0;
309 acc2 = 0;
310 acc3 = 0;
311
312 /* read x[0], x[1], x[2] samples */
313 x0 = *px++;
314 x1 = *px++;
315 x2 = *px++;
316
317 /* Apply loop unrolling and compute 4 MACs simultaneously. */
318 k = srcBLen >> 2u;
319
320 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
321 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
322 do
323 {
324 /* Read y[0] sample */
325 c0 = *py++;
326 /* Read y[1] sample */
327 c1 = *py++;
328
329 /* Read x[3] sample */
330 x3 = *px++;
331
332 /* x[0] and x[1] are packed */
333 in1 = (q15_t) x0;
334 in2 = (q15_t) x1;
335
336 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
337
338 /* y[0] and y[1] are packed */
339 in1 = (q15_t) c0;
340 in2 = (q15_t) c1;
341
342 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
343
344 /* acc0 += x[0] * y[0] + x[1] * y[1] */
345 acc0 = __SMLAD(input1, input2, acc0);
346
347 /* x[1] and x[2] are packed */
348 in1 = (q15_t) x1;
349 in2 = (q15_t) x2;
350
351 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
352
353 /* acc1 += x[1] * y[0] + x[2] * y[1] */
354 acc1 = __SMLAD(input1, input2, acc1);
355
356 /* x[2] and x[3] are packed */
357 in1 = (q15_t) x2;
358 in2 = (q15_t) x3;
359
360 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
361
362 /* acc2 += x[2] * y[0] + x[3] * y[1] */
363 acc2 = __SMLAD(input1, input2, acc2);
364
365 /* Read x[4] sample */
366 x0 = *(px++);
367
368 /* x[3] and x[4] are packed */
369 in1 = (q15_t) x3;
370 in2 = (q15_t) x0;
371
372 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
373
374 /* acc3 += x[3] * y[0] + x[4] * y[1] */
375 acc3 = __SMLAD(input1, input2, acc3);
376
377 /* Read y[2] sample */
378 c0 = *py++;
379 /* Read y[3] sample */
380 c1 = *py++;
381
382 /* Read x[5] sample */
383 x1 = *px++;
384
385 /* x[2] and x[3] are packed */
386 in1 = (q15_t) x2;
387 in2 = (q15_t) x3;
388
389 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
390
391 /* y[2] and y[3] are packed */
392 in1 = (q15_t) c0;
393 in2 = (q15_t) c1;
394
395 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
396
397 /* acc0 += x[2] * y[2] + x[3] * y[3] */
398 acc0 = __SMLAD(input1, input2, acc0);
399
400 /* x[3] and x[4] are packed */
401 in1 = (q15_t) x3;
402 in2 = (q15_t) x0;
403
404 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
405
406 /* acc1 += x[3] * y[2] + x[4] * y[3] */
407 acc1 = __SMLAD(input1, input2, acc1);
408
409 /* x[4] and x[5] are packed */
410 in1 = (q15_t) x0;
411 in2 = (q15_t) x1;
412
413 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
414
415 /* acc2 += x[4] * y[2] + x[5] * y[3] */
416 acc2 = __SMLAD(input1, input2, acc2);
417
418 /* Read x[6] sample */
419 x2 = *px++;
420
421 /* x[5] and x[6] are packed */
422 in1 = (q15_t) x1;
423 in2 = (q15_t) x2;
424
425 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
426
427 /* acc3 += x[5] * y[2] + x[6] * y[3] */
428 acc3 = __SMLAD(input1, input2, acc3);
429
430 } while(--k);
431
432 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
433 ** No loop unrolling is used. */
434 k = srcBLen % 0x4u;
435
436 while(k > 0u)
437 {
438 /* Read y[4] sample */
439 c0 = *py++;
440
441 /* Read x[7] sample */
442 x3 = *px++;
443
444 /* Perform the multiply-accumulates */
445 /* acc0 += x[4] * y[4] */
446 acc0 += ((q15_t) x0 * c0);
447 /* acc1 += x[5] * y[4] */
448 acc1 += ((q15_t) x1 * c0);
449 /* acc2 += x[6] * y[4] */
450 acc2 += ((q15_t) x2 * c0);
451 /* acc3 += x[7] * y[4] */
452 acc3 += ((q15_t) x3 * c0);
453
454 /* Reuse the present samples for the next MAC */
455 x0 = x1;
456 x1 = x2;
457 x2 = x3;
458
459 /* Decrement the loop counter */
460 k--;
461 }
462
463 /* Store the result in the accumulator in the destination buffer. */
464 *pOut = (q7_t) (__SSAT(acc0 >> 7, 8));
465 /* Destination pointer is updated according to the address modifier, inc */
466 pOut += inc;
467
468 *pOut = (q7_t) (__SSAT(acc1 >> 7, 8));
469 pOut += inc;
470
471 *pOut = (q7_t) (__SSAT(acc2 >> 7, 8));
472 pOut += inc;
473
474 *pOut = (q7_t) (__SSAT(acc3 >> 7, 8));
475 pOut += inc;
476
477 count += 4u;
478 /* Update the inputA and inputB pointers for next MAC calculation */
479 px = pIn1 + count;
480 py = pIn2;
481
482 /* Decrement the loop counter */
483 blkCnt--;
484 }
485
486 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
487 ** No loop unrolling is used. */
488 blkCnt = blockSize2 % 0x4u;
489
490 while(blkCnt > 0u)
491 {
492 /* Accumulator is made zero for every iteration */
493 sum = 0;
494
495 /* Apply loop unrolling and compute 4 MACs simultaneously. */
496 k = srcBLen >> 2u;
497
498 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
499 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
500 while(k > 0u)
501 {
502 /* Reading two inputs of SrcA buffer and packing */
503 in1 = (q15_t) * px++;
504 in2 = (q15_t) * px++;
505 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
506
507 /* Reading two inputs of SrcB buffer and packing */
508 in1 = (q15_t) * py++;
509 in2 = (q15_t) * py++;
510 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
511
512 /* Perform the multiply-accumulates */
513 sum = __SMLAD(input1, input2, sum);
514
515 /* Reading two inputs of SrcA buffer and packing */
516 in1 = (q15_t) * px++;
517 in2 = (q15_t) * px++;
518 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
519
520 /* Reading two inputs of SrcB buffer and packing */
521 in1 = (q15_t) * py++;
522 in2 = (q15_t) * py++;
523 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
524
525 /* Perform the multiply-accumulates */
526 sum = __SMLAD(input1, input2, sum);
527
528 /* Decrement the loop counter */
529 k--;
530 }
531
532 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
533 ** No loop unrolling is used. */
534 k = srcBLen % 0x4u;
535
536 while(k > 0u)
537 {
538 /* Perform the multiply-accumulates */
539 sum += ((q15_t) * px++ * *py++);
540
541 /* Decrement the loop counter */
542 k--;
543 }
544
545 /* Store the result in the accumulator in the destination buffer. */
546 *pOut = (q7_t) (__SSAT(sum >> 7, 8));
547 /* Destination pointer is updated according to the address modifier, inc */
548 pOut += inc;
549
550 /* Increment the pointer pIn1 index, count by 1 */
551 count++;
552
553 /* Update the inputA and inputB pointers for next MAC calculation */
554 px = pIn1 + count;
555 py = pIn2;
556
557 /* Decrement the loop counter */
558 blkCnt--;
559 }
560 }
561 else
562 {
563 /* If the srcBLen is not a multiple of 4,
564 * the blockSize2 loop cannot be unrolled by 4 */
565 blkCnt = blockSize2;
566
567 while(blkCnt > 0u)
568 {
569 /* Accumulator is made zero for every iteration */
570 sum = 0;
571
572 /* Loop over srcBLen */
573 k = srcBLen;
574
575 while(k > 0u)
576 {
577 /* Perform the multiply-accumulate */
578 sum += ((q15_t) * px++ * *py++);
579
580 /* Decrement the loop counter */
581 k--;
582 }
583
584 /* Store the result in the accumulator in the destination buffer. */
585 *pOut = (q7_t) (__SSAT(sum >> 7, 8));
586 /* Destination pointer is updated according to the address modifier, inc */
587 pOut += inc;
588
589 /* Increment the MAC count */
590 count++;
591
592 /* Update the inputA and inputB pointers for next MAC calculation */
593 px = pIn1 + count;
594 py = pIn2;
595
596
597 /* Decrement the loop counter */
598 blkCnt--;
599 }
600 }
601
602 /* --------------------------
603 * Initializations of stage3
604 * -------------------------*/
605
606 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
607 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]
608 * ....
609 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1]
610 * sum += x[srcALen-1] * y[0]
611 */
612
613 /* In this stage the MAC operations are decreased by 1 for every iteration.
614 The count variable holds the number of MAC operations performed */
615 count = srcBLen - 1u;
616
617 /* Working pointer of inputA */
618 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
619 px = pSrc1;
620
621 /* Working pointer of inputB */
622 py = pIn2;
623
624 /* -------------------
625 * Stage3 process
626 * ------------------*/
627
628 while(blockSize3 > 0u)
629 {
630 /* Accumulator is made zero for every iteration */
631 sum = 0;
632
633 /* Apply loop unrolling and compute 4 MACs simultaneously. */
634 k = count >> 2u;
635
636 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
637 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
638 while(k > 0u)
639 {
640 /* x[srcALen - srcBLen + 1] , x[srcALen - srcBLen + 2] */
641 in1 = (q15_t) * px++;
642 in2 = (q15_t) * px++;
643 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
644
645 /* y[0] , y[1] */
646 in1 = (q15_t) * py++;
647 in2 = (q15_t) * py++;
648 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
649
650 /* sum += x[srcALen - srcBLen + 1] * y[0] */
651 /* sum += x[srcALen - srcBLen + 2] * y[1] */
652 sum = __SMLAD(input1, input2, sum);
653
654 /* x[srcALen - srcBLen + 3] , x[srcALen - srcBLen + 4] */
655 in1 = (q15_t) * px++;
656 in2 = (q15_t) * px++;
657 input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
658
659 /* y[2] , y[3] */
660 in1 = (q15_t) * py++;
661 in2 = (q15_t) * py++;
662 input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16);
663
664 /* sum += x[srcALen - srcBLen + 3] * y[2] */
665 /* sum += x[srcALen - srcBLen + 4] * y[3] */
666 sum = __SMLAD(input1, input2, sum);
667
668 /* Decrement the loop counter */
669 k--;
670 }
671
672 /* If the count is not a multiple of 4, compute any remaining MACs here.
673 ** No loop unrolling is used. */
674 k = count % 0x4u;
675
676 while(k > 0u)
677 {
678 /* Perform the multiply-accumulates */
679 sum += ((q15_t) * px++ * *py++);
680
681 /* Decrement the loop counter */
682 k--;
683 }
684
685 /* Store the result in the accumulator in the destination buffer. */
686 *pOut = (q7_t) (__SSAT(sum >> 7, 8));
687 /* Destination pointer is updated according to the address modifier, inc */
688 pOut += inc;
689
690 /* Update the inputA and inputB pointers for next MAC calculation */
691 px = ++pSrc1;
692 py = pIn2;
693
694 /* Decrement the MAC count */
695 count--;
696
697 /* Decrement the loop counter */
698 blockSize3--;
699 }
700
701 #else
702
703 /* Run the below code for Cortex-M0 */
704
705 q7_t *pIn1 = pSrcA; /* inputA pointer */
706 q7_t *pIn2 = pSrcB + (srcBLen - 1u); /* inputB pointer */
707 q31_t sum; /* Accumulator */
708 uint32_t i = 0u, j; /* loop counters */
709 uint32_t inv = 0u; /* Reverse order flag */
710 uint32_t tot = 0u; /* Length */
711
712 /* The algorithm implementation is based on the lengths of the inputs. */
713 /* srcB is always made to slide across srcA. */
714 /* So srcBLen is always considered as shorter or equal to srcALen */
715 /* But CORR(x, y) is reverse of CORR(y, x) */
716 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
717 /* and a varaible, inv is set to 1 */
718 /* If lengths are not equal then zero pad has to be done to make the two
719 * inputs of same length. But to improve the performance, we include zeroes
720 * in the output instead of zero padding either of the the inputs*/
721 /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the
722 * starting of the output buffer */
723 /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the
724 * ending of the output buffer */
725 /* Once the zero padding is done the remaining of the output is calcualted
726 * using convolution but with the shorter signal time shifted. */
727
728 /* Calculate the length of the remaining sequence */
729 tot = ((srcALen + srcBLen) - 2u);
730
731 if(srcALen > srcBLen)
732 {
733 /* Calculating the number of zeros to be padded to the output */
734 j = srcALen - srcBLen;
735
736 /* Initialise the pointer after zero padding */
737 pDst += j;
738 }
739
740 else if(srcALen < srcBLen)
741 {
742 /* Initialization to inputB pointer */
743 pIn1 = pSrcB;
744
745 /* Initialization to the end of inputA pointer */
746 pIn2 = pSrcA + (srcALen - 1u);
747
748 /* Initialisation of the pointer after zero padding */
749 pDst = pDst + tot;
750
751 /* Swapping the lengths */
752 j = srcALen;
753 srcALen = srcBLen;
754 srcBLen = j;
755
756 /* Setting the reverse flag */
757 inv = 1;
758
759 }
760
761 /* Loop to calculate convolution for output length number of times */
762 for (i = 0u; i <= tot; i++)
763 {
764 /* Initialize sum with zero to carry on MAC operations */
765 sum = 0;
766
767 /* Loop to perform MAC operations according to convolution equation */
768 for (j = 0u; j <= i; j++)
769 {
770 /* Check the array limitations */
771 if((((i - j) < srcBLen) && (j < srcALen)))
772 {
773 /* z[i] += x[i-j] * y[j] */
774 sum += ((q15_t) pIn1[j] * pIn2[-((int32_t) i - j)]);
775 }
776 }
777 /* Store the output in the destination buffer */
778 if(inv == 1)
779 *pDst-- = (q7_t) __SSAT((sum >> 7u), 8u);
780 else
781 *pDst++ = (q7_t) __SSAT((sum >> 7u), 8u);
782 }
783
784 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
785
786 }
787
788 /**
789 * @} end of Corr group
790 */
Imprint / Impressum