]> git.gir.st - tmk_keyboard.git/blob - tool/mbed/mbed-sdk/libraries/mbed/targets/cmsis/TARGET_STM/TARGET_STM32F1/stm32f1xx_hal_rtc.c
Squashed 'tmk_core/' changes from 7967731..b9e0ea0
[tmk_keyboard.git] / tool / mbed / mbed-sdk / libraries / mbed / targets / cmsis / TARGET_STM / TARGET_STM32F1 / stm32f1xx_hal_rtc.c
1 /**
2 ******************************************************************************
3 * @file stm32f1xx_hal_rtc.c
4 * @author MCD Application Team
5 * @version V1.0.0
6 * @date 15-December-2014
7 * @brief RTC HAL module driver.
8 * This file provides firmware functions to manage the following
9 * functionalities of the Real Time Clock (RTC) peripheral:
10 * + Initialization and de-initialization functions
11 * + RTC Time and Date functions
12 * + RTC Alarm functions
13 * + Peripheral Control functions
14 * + Peripheral State functions
15 *
16 @verbatim
17 ==============================================================================
18 ##### How to use this driver #####
19 ==================================================================
20 [..]
21 (+) Enable the RTC domain access (see description in the section above).
22 (+) Configure the RTC Prescaler (Asynchronous prescaler to generate RTC 1Hz time base)
23 using the HAL_RTC_Init() function.
24
25 *** Time and Date configuration ***
26 ===================================
27 [..]
28 (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
29 and HAL_RTC_SetDate() functions.
30 (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
31
32 *** Alarm configuration ***
33 ===========================
34 [..]
35 (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
36 You can also configure the RTC Alarm with interrupt mode using the HAL_RTC_SetAlarm_IT() function.
37 (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
38
39 *** Tamper configuration ***
40 ============================
41 [..]
42 (+) Enable the RTC Tamper and configure the Tamper Level using the
43 HAL_RTCEx_SetTamper() function. You can configure RTC Tamper with interrupt
44 mode using HAL_RTCEx_SetTamper_IT() function.
45 (+) The TAMPER1 alternate function can be mapped to PC13
46
47 *** Backup Data Registers configuration ***
48 ===========================================
49 [..]
50 (+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite()
51 function.
52 (+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead()
53 function.
54
55 ##### WARNING: Drivers Restrictions #####
56 ==================================================================
57 [..] RTC version used on STM32F1 families is version V1. All the features supported by V2
58 (other families) will be not supported on F1.
59 [..] As on V2, main RTC features are managed by HW. But on F1, date feature is completely
60 managed by SW.
61 [..] Then, there are some restrictions compared to other families:
62 (+) Only format 24 hours supported in HAL (format 12 hours not supported)
63 (+) Date is saved in SRAM. Then, when MCU is in STOP or STANDBY mode, date will be lost.
64 User should implement a way to save date before entering in low power mode (an
65 example is provided with firmware package based on backup registers)
66 (+) Date is automatically updated each time a HAL_RTC_GetTime or HAL_RTC_GetDate is called.
67 (+) Alarm detection is limited to 1 day. It will expire only 1 time (no alarm repetition, need
68 to program a new alarm)
69
70 ##### Backup Domain Operating Condition #####
71 ==============================================================================
72 [..] The real-time clock (RTC) and the RTC backup registers can be powered
73 from the VBAT voltage when the main VDD supply is powered off.
74 To retain the content of the RTC backup registers and supply the RTC
75 when VDD is turned off, VBAT pin can be connected to an optional
76 standby voltage supplied by a battery or by another source.
77
78 [..] To allow the RTC operating even when the main digital supply (VDD) is turned
79 off, the VBAT pin powers the following blocks:
80 (+) The RTC
81 (+) The LSE oscillator
82 (+) PC13 I/O
83
84 [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
85 the following pins are available:
86 (+) PC13 can be used as a Tamper pin
87
88 [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
89 because VDD is not present), the following pins are available:
90 (+) PC13 can be used as the Tamper pin
91
92 ##### Backup Domain Reset #####
93 ==================================================================
94 [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
95 to their reset values.
96 [..] A backup domain reset is generated when one of the following events occurs:
97 (#) Software reset, triggered by setting the BDRST bit in the
98 RCC Backup domain control register (RCC_BDCR).
99 (#) VDD or VBAT power on, if both supplies have previously been powered off.
100 (#) Tamper detection event resets all data backup registers.
101
102 ##### Backup Domain Access #####
103 ==================================================================
104 [..] After reset, the backup domain (RTC registers, RTC backup data
105 registers and backup SRAM) is protected against possible unwanted write
106 accesses.
107 [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
108 (+) Call the function HAL_RCCEx_PeriphCLKConfig in using RCC_PERIPHCLK_RTC for
109 PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSE)
110 (+) Enable the BKP clock in using __HAL_RCC_BKP_CLK_ENABLE()
111
112 ##### RTC and low power modes #####
113 ==================================================================
114 [..] The MCU can be woken up from a low power mode by an RTC alternate
115 function.
116 [..] The RTC alternate functions are the RTC alarms (Alarm A),
117 and RTC tamper event detection.
118 These RTC alternate functions can wake up the system from the Stop and
119 Standby low power modes.
120 [..] The system can also wake up from low power modes without depending
121 on an external interrupt (Auto-wakeup mode), by using the RTC alarm.
122
123 @endverbatim
124 ******************************************************************************
125 * @attention
126 *
127 * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
128 *
129 * Redistribution and use in source and binary forms, with or without modification,
130 * are permitted provided that the following conditions are met:
131 * 1. Redistributions of source code must retain the above copyright notice,
132 * this list of conditions and the following disclaimer.
133 * 2. Redistributions in binary form must reproduce the above copyright notice,
134 * this list of conditions and the following disclaimer in the documentation
135 * and/or other materials provided with the distribution.
136 * 3. Neither the name of STMicroelectronics nor the names of its contributors
137 * may be used to endorse or promote products derived from this software
138 * without specific prior written permission.
139 *
140 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
141 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
142 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
143 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
144 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
145 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
146 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
147 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
148 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
149 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
150 *
151 ******************************************************************************
152 */
153
154 /* Includes ------------------------------------------------------------------*/
155 #include "stm32f1xx_hal.h"
156
157 /** @addtogroup STM32F1xx_HAL_Driver
158 * @{
159 */
160
161 /** @defgroup RTC RTC
162 * @brief RTC HAL module driver
163 * @{
164 */
165
166 #ifdef HAL_RTC_MODULE_ENABLED
167
168 /* Private typedef -----------------------------------------------------------*/
169 /* Private define ------------------------------------------------------------*/
170 /** @defgroup RTC_Private_Constants RTC Private Constants
171 * @{
172 */
173 #define RTC_ALARM_RESETVALUE_REGISTER (uint16_t)0xFFFF
174 #define RTC_ALARM_RESETVALUE (uint32_t)0xFFFFFFFF
175
176 /**
177 * @}
178 */
179
180 /* Private macro -------------------------------------------------------------*/
181 /** @defgroup RTC_Private_Macros RTC Private Macros
182 * @{
183 */
184 /**
185 * @}
186 */
187
188 /* Private variables ---------------------------------------------------------*/
189 /* Private function prototypes -----------------------------------------------*/
190 /** @defgroup RTC_Private_Functions RTC Private Functions
191 * @{
192 */
193 static uint32_t RTC_ReadTimeCounter(RTC_HandleTypeDef* hrtc);
194 static HAL_StatusTypeDef RTC_WriteTimeCounter(RTC_HandleTypeDef* hrtc, uint32_t TimeCounter);
195 static uint32_t RTC_ReadAlarmCounter(RTC_HandleTypeDef* hrtc);
196 static HAL_StatusTypeDef RTC_WriteAlarmCounter(RTC_HandleTypeDef* hrtc, uint32_t AlarmCounter);
197 static HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc);
198 static HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef* hrtc);
199 static uint8_t RTC_ByteToBcd2(uint8_t Value);
200 static uint8_t RTC_Bcd2ToByte(uint8_t Value);
201 static uint8_t RTC_IsLeapYear(uint16_t nYear);
202 static void RTC_DateUpdate(RTC_HandleTypeDef* hrtc, uint32_t DayElapsed);
203 static uint8_t RTC_WeekDayNum(uint32_t nYear, uint8_t nMonth, uint8_t nDay);
204
205 /**
206 * @}
207 */
208
209 /* Private functions ---------------------------------------------------------*/
210 /** @defgroup RTC_Exported_Functions RTC Exported Functions
211 * @{
212 */
213
214 /** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
215 * @brief Initialization and Configuration functions
216 *
217 @verbatim
218 ===============================================================================
219 ##### Initialization and de-initialization functions #####
220 ===============================================================================
221 [..] This section provides functions allowing to initialize and configure the
222 RTC Prescaler (Asynchronous), disable RTC registers Write protection,
223 enter and exit the RTC initialization mode,
224 RTC registers synchronization check and reference clock detection enable.
225 (#) The RTC Prescaler should be programmed to generate the RTC 1Hz time base.
226 (#) All RTC registers are Write protected. Writing to the RTC registers
227 is enabled by setting the CNF bit in the RTC_CRL register.
228 (#) To read the calendar after wakeup from low power modes (Standby or Stop)
229 the software must first wait for the RSF bit (Register Synchronized Flag)
230 in the RTC_CRL register to be set by hardware.
231 The HAL_RTC_WaitForSynchro() function implements the above software
232 sequence (RSF clear and RSF check).
233
234 @endverbatim
235 * @{
236 */
237
238 /**
239 * @brief Initializes the RTC peripheral
240 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
241 * the configuration information for RTC.
242 * @retval HAL status
243 */
244 HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
245 {
246 uint32_t prescaler = 0;
247 /* Check input parameters */
248 if(hrtc == NULL)
249 {
250 return HAL_ERROR;
251 }
252
253 /* Check the parameters */
254 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
255 assert_param(IS_RTC_CALIB_OUTPUT(hrtc->Init.OutPut));
256 assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
257
258 if(hrtc->State == HAL_RTC_STATE_RESET)
259 {
260 /* Allocate lock resource and initialize it */
261 hrtc-> Lock = HAL_UNLOCKED;
262
263 /* Initialize RTC MSP */
264 HAL_RTC_MspInit(hrtc);
265 }
266
267 /* Set RTC state */
268 hrtc->State = HAL_RTC_STATE_BUSY;
269
270 /* Waiting for synchro */
271 if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
272 {
273 /* Set RTC state */
274 hrtc->State = HAL_RTC_STATE_ERROR;
275
276 return HAL_ERROR;
277 }
278
279 /* Set Initialization mode */
280 if(RTC_EnterInitMode(hrtc) != HAL_OK)
281 {
282 /* Set RTC state */
283 hrtc->State = HAL_RTC_STATE_ERROR;
284
285 return HAL_ERROR;
286 }
287 else
288 {
289 /* Clear Flags Bits */
290 CLEAR_BIT(hrtc->Instance->CRL, (RTC_FLAG_OW | RTC_FLAG_ALRAF | RTC_FLAG_SEC));
291
292 if(hrtc->Init.OutPut != RTC_OUTPUTSOURCE_NONE)
293 {
294 /* Disable the selected Tamper pin */
295 CLEAR_BIT(BKP->CR, BKP_CR_TPE);
296 }
297
298 /* Set the signal which will be routed to RTC Tamper pin*/
299 MODIFY_REG(BKP->RTCCR, (BKP_RTCCR_CCO | BKP_RTCCR_ASOE | BKP_RTCCR_ASOS), hrtc->Init.OutPut);
300
301 if (hrtc->Init.AsynchPrediv != RTC_AUTO_1_SECOND)
302 {
303 /* RTC Prescaler provided directly by end-user*/
304 prescaler = hrtc->Init.AsynchPrediv;
305 }
306 else
307 {
308 /* RTC Prescaler will be automatically calculated to get 1 second timebase */
309 /* Get the RTCCLK frequency */
310 prescaler = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_RTC);
311
312 /* Check that RTC clock is enabled*/
313 if (prescaler == 0)
314 {
315 /* Should not happen. Frequency is not available*/
316 hrtc->State = HAL_RTC_STATE_ERROR;
317 return HAL_ERROR;
318 }
319 else
320 {
321 /* RTC period = RTCCLK/(RTC_PR + 1) */
322 prescaler = prescaler - 1;
323 }
324 }
325
326 /* Configure the RTC_PRLH / RTC_PRLL */
327 MODIFY_REG(hrtc->Instance->PRLH, RTC_PRLH_PRL, (prescaler >> 16));
328 MODIFY_REG(hrtc->Instance->PRLL, RTC_PRLL_PRL, (prescaler & RTC_PRLL_PRL));
329
330 /* Wait for synchro */
331 if(RTC_ExitInitMode(hrtc) != HAL_OK)
332 {
333 hrtc->State = HAL_RTC_STATE_ERROR;
334
335 return HAL_ERROR;
336 }
337
338 /* Initialize date to 1st of January 2000 */
339 hrtc->DateToUpdate.Year = 0x00;
340 hrtc->DateToUpdate.Month = RTC_MONTH_JANUARY;
341 hrtc->DateToUpdate.Date = 0x01;
342
343 /* Set RTC state */
344 hrtc->State = HAL_RTC_STATE_READY;
345
346 return HAL_OK;
347 }
348 }
349
350 /**
351 * @brief DeInitializes the RTC peripheral
352 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
353 * the configuration information for RTC.
354 * @note This function does not reset the RTC Backup Data registers.
355 * @retval HAL status
356 */
357 HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
358 {
359 /* Check input parameters */
360 if(hrtc == NULL)
361 {
362 return HAL_ERROR;
363 }
364
365 /* Check the parameters */
366 assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
367
368 /* Set RTC state */
369 hrtc->State = HAL_RTC_STATE_BUSY;
370
371 /* Set Initialization mode */
372 if(RTC_EnterInitMode(hrtc) != HAL_OK)
373 {
374 /* Set RTC state */
375 hrtc->State = HAL_RTC_STATE_ERROR;
376
377 /* Release Lock */
378 __HAL_UNLOCK(hrtc);
379
380 return HAL_ERROR;
381 }
382 else
383 {
384 CLEAR_REG(hrtc->Instance->CNTL);
385 CLEAR_REG(hrtc->Instance->CNTH);
386 WRITE_REG(hrtc->Instance->PRLL, 0x00008000);
387 CLEAR_REG(hrtc->Instance->PRLH);
388
389 /* Reset All CRH/CRL bits */
390 CLEAR_REG(hrtc->Instance->CRH);
391 CLEAR_REG(hrtc->Instance->CRL);
392
393 if(RTC_ExitInitMode(hrtc) != HAL_OK)
394 {
395 hrtc->State = HAL_RTC_STATE_ERROR;
396
397 /* Process Unlocked */
398 __HAL_UNLOCK(hrtc);
399
400 return HAL_ERROR;
401 }
402 }
403
404 /* Wait for synchro*/
405 HAL_RTC_WaitForSynchro(hrtc);
406
407 /* Clear RSF flag */
408 CLEAR_BIT(hrtc->Instance->CRL, RTC_FLAG_RSF);
409
410 /* De-Initialize RTC MSP */
411 HAL_RTC_MspDeInit(hrtc);
412
413 hrtc->State = HAL_RTC_STATE_RESET;
414
415 /* Release Lock */
416 __HAL_UNLOCK(hrtc);
417
418 return HAL_OK;
419 }
420
421 /**
422 * @brief Initializes the RTC MSP.
423 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
424 * the configuration information for RTC.
425 * @retval None
426 */
427 __weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc)
428 {
429 /* NOTE : This function Should not be modified, when the callback is needed,
430 the HAL_RTC_MspInit could be implemented in the user file
431 */
432 }
433
434 /**
435 * @brief DeInitializes the RTC MSP.
436 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
437 * the configuration information for RTC.
438 * @retval None
439 */
440 __weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc)
441 {
442 /* NOTE : This function Should not be modified, when the callback is needed,
443 the HAL_RTC_MspDeInit could be implemented in the user file
444 */
445 }
446
447 /**
448 * @}
449 */
450
451 /** @defgroup RTC_Exported_Functions_Group2 Time and Date functions
452 * @brief RTC Time and Date functions
453 *
454 @verbatim
455 ===============================================================================
456 ##### RTC Time and Date functions #####
457 ===============================================================================
458
459 [..] This section provides functions allowing to configure Time and Date features
460
461 @endverbatim
462 * @{
463 */
464
465 /**
466 * @brief Sets RTC current time.
467 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
468 * the configuration information for RTC.
469 * @param sTime: Pointer to Time structure
470 * @param Format: Specifies the format of the entered parameters.
471 * This parameter can be one of the following values:
472 * @arg RTC_FORMAT_BIN: Binary data format
473 * @arg RTC_FORMAT_BCD: BCD data format
474 * @retval HAL status
475 */
476 HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
477 {
478 uint32_t counter_time = 0, counter_alarm = 0;
479
480 /* Check input parameters */
481 if((hrtc == NULL) || (sTime == NULL))
482 {
483 return HAL_ERROR;
484 }
485
486 /* Check the parameters */
487 assert_param(IS_RTC_FORMAT(Format));
488
489 /* Process Locked */
490 __HAL_LOCK(hrtc);
491
492 hrtc->State = HAL_RTC_STATE_BUSY;
493
494 if(Format == RTC_FORMAT_BIN)
495 {
496 assert_param(IS_RTC_HOUR24(sTime->Hours));
497 assert_param(IS_RTC_MINUTES(sTime->Minutes));
498 assert_param(IS_RTC_SECONDS(sTime->Seconds));
499
500 counter_time = (uint32_t)(((uint32_t)sTime->Hours * 3600) + \
501 ((uint32_t)sTime->Minutes * 60) + \
502 ((uint32_t)sTime->Seconds));
503 }
504 else
505 {
506 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
507 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
508 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
509
510 counter_time = (((uint32_t)(RTC_Bcd2ToByte(sTime->Hours)) * 3600) + \
511 ((uint32_t)(RTC_Bcd2ToByte(sTime->Minutes)) * 60) + \
512 ((uint32_t)(RTC_Bcd2ToByte(sTime->Seconds))));
513 }
514
515 /* Write time counter in RTC registers */
516 if (RTC_WriteTimeCounter(hrtc, counter_time) != HAL_OK)
517 {
518 /* Set RTC state */
519 hrtc->State = HAL_RTC_STATE_ERROR;
520
521 /* Process Unlocked */
522 __HAL_UNLOCK(hrtc);
523
524 return HAL_ERROR;
525 }
526 else
527 {
528 /* Clear Second and overflow flags */
529 CLEAR_BIT(hrtc->Instance->CRL, (RTC_FLAG_SEC | RTC_FLAG_OW));
530
531 /* Read current Alarm counter in RTC registers */
532 counter_alarm = RTC_ReadAlarmCounter(hrtc);
533
534 /* Set again alarm to match with new time if enabled */
535 if (counter_alarm != RTC_ALARM_RESETVALUE)
536 {
537 if(counter_alarm < counter_time)
538 {
539 /* Add 1 day to alarm counter*/
540 counter_alarm += (uint32_t)(24 * 3600);
541
542 /* Write new Alarm counter in RTC registers */
543 if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
544 {
545 /* Set RTC state */
546 hrtc->State = HAL_RTC_STATE_ERROR;
547
548 /* Process Unlocked */
549 __HAL_UNLOCK(hrtc);
550
551 return HAL_ERROR;
552 }
553 }
554 }
555
556 hrtc->State = HAL_RTC_STATE_READY;
557
558 __HAL_UNLOCK(hrtc);
559
560 return HAL_OK;
561 }
562 }
563
564 /**
565 * @brief Gets RTC current time.
566 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
567 * the configuration information for RTC.
568 * @param sTime: Pointer to Time structure
569 * @param Format: Specifies the format of the entered parameters.
570 * This parameter can be one of the following values:
571 * @arg RTC_FORMAT_BIN: Binary data format
572 * @arg RTC_FORMAT_BCD: BCD data format
573 * @retval HAL status
574 */
575 HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
576 {
577 uint32_t counter_time = 0, counter_alarm = 0, days_elapsed = 0, hours = 0;
578
579 /* Check input parameters */
580 if((hrtc == NULL) || (sTime == NULL))
581 {
582 return HAL_ERROR;
583 }
584
585 /* Check the parameters */
586 assert_param(IS_RTC_FORMAT(Format));
587
588 /* Check if counter overflow occurred */
589 if (__HAL_RTC_OVERFLOW_GET_FLAG(hrtc, RTC_FLAG_OW))
590 {
591 return HAL_ERROR;
592 }
593
594 /* Read the time counter*/
595 counter_time = RTC_ReadTimeCounter(hrtc);
596
597 /* Fill the structure fields with the read parameters */
598 hours = counter_time / 3600;
599 sTime->Minutes = (uint8_t)((counter_time % 3600) / 60);
600 sTime->Seconds = (uint8_t)((counter_time % 3600) % 60);
601
602 if (hours >= 24)
603 {
604 /* Get number of days elapsed from last calculation */
605 days_elapsed = (hours / 24);
606
607 /* Set Hours in RTC_TimeTypeDef structure*/
608 sTime->Hours = (hours % 24);
609
610 /* Read Alarm counter in RTC registers */
611 counter_alarm = RTC_ReadAlarmCounter(hrtc);
612
613 /* Calculate remaining time to reach alarm (only if set and not yet expired)*/
614 if ((counter_alarm != RTC_ALARM_RESETVALUE) && (counter_alarm > counter_time))
615 {
616 counter_alarm -= counter_time;
617 }
618 else
619 {
620 /* In case of counter_alarm < counter_time */
621 /* Alarm expiration already occurred but alarm not deactivated */
622 counter_alarm = RTC_ALARM_RESETVALUE;
623 }
624
625 /* Set updated time in decreasing counter by number of days elapsed */
626 counter_time -= (days_elapsed * 24 * 3600);
627
628 /* Write time counter in RTC registers */
629 if (RTC_WriteTimeCounter(hrtc, counter_time) != HAL_OK)
630 {
631 return HAL_ERROR;
632 }
633
634 /* Set updated alarm to be set */
635 if (counter_alarm != RTC_ALARM_RESETVALUE)
636 {
637 counter_alarm += counter_time;
638
639 /* Write time counter in RTC registers */
640 if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
641 {
642 return HAL_ERROR;
643 }
644 }
645 else
646 {
647 /* Alarm already occurred. Set it to reset values to avoid unexpected expiration */
648 if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
649 {
650 return HAL_ERROR;
651 }
652 }
653
654 /* Update date */
655 RTC_DateUpdate(hrtc, days_elapsed);
656 }
657 else
658 {
659 sTime->Hours = hours;
660 }
661
662 /* Check the input parameters format */
663 if(Format != RTC_FORMAT_BIN)
664 {
665 /* Convert the time structure parameters to BCD format */
666 sTime->Hours = (uint8_t)RTC_ByteToBcd2(sTime->Hours);
667 sTime->Minutes = (uint8_t)RTC_ByteToBcd2(sTime->Minutes);
668 sTime->Seconds = (uint8_t)RTC_ByteToBcd2(sTime->Seconds);
669 }
670
671 return HAL_OK;
672 }
673
674
675 /**
676 * @brief Sets RTC current date.
677 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
678 * the configuration information for RTC.
679 * @param sDate: Pointer to date structure
680 * @param Format: specifies the format of the entered parameters.
681 * This parameter can be one of the following values:
682 * @arg RTC_FORMAT_BIN: Binary data format
683 * @arg RTC_FORMAT_BCD: BCD data format
684 * @retval HAL status
685 */
686 HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
687 {
688 uint32_t counter_time = 0, counter_alarm = 0, hours = 0;
689
690 /* Check input parameters */
691 if((hrtc == NULL) || (sDate == NULL))
692 {
693 return HAL_ERROR;
694 }
695
696 /* Check the parameters */
697 assert_param(IS_RTC_FORMAT(Format));
698
699 /* Process Locked */
700 __HAL_LOCK(hrtc);
701
702 hrtc->State = HAL_RTC_STATE_BUSY;
703
704 if(Format == RTC_FORMAT_BIN)
705 {
706 assert_param(IS_RTC_YEAR(sDate->Year));
707 assert_param(IS_RTC_MONTH(sDate->Month));
708 assert_param(IS_RTC_DATE(sDate->Date));
709
710 /* Change the current date */
711 hrtc->DateToUpdate.Year = sDate->Year;
712 hrtc->DateToUpdate.Month = sDate->Month;
713 hrtc->DateToUpdate.Date = sDate->Date;
714 }
715 else
716 {
717 assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
718 assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
719 assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
720
721 /* Change the current date */
722 hrtc->DateToUpdate.Year = RTC_Bcd2ToByte(sDate->Year);
723 hrtc->DateToUpdate.Month = RTC_Bcd2ToByte(sDate->Month);
724 hrtc->DateToUpdate.Date = RTC_Bcd2ToByte(sDate->Date);
725 }
726
727 /* WeekDay set by user can be ignored because automatically calculated */
728 hrtc->DateToUpdate.WeekDay = RTC_WeekDayNum(hrtc->DateToUpdate.Year, hrtc->DateToUpdate.Month, hrtc->DateToUpdate.Date);
729 sDate->WeekDay = hrtc->DateToUpdate.WeekDay;
730
731 /* Reset time to be aligned on the same day */
732 /* Read the time counter*/
733 counter_time = RTC_ReadTimeCounter(hrtc);
734
735 /* Fill the structure fields with the read parameters */
736 hours = counter_time / 3600;
737 if (hours > 24)
738 {
739 /* Set updated time in decreasing counter by number of days elapsed */
740 counter_time -= ((hours / 24) * 24 * 3600);
741 /* Write time counter in RTC registers */
742 if (RTC_WriteTimeCounter(hrtc, counter_time) != HAL_OK)
743 {
744 /* Set RTC state */
745 hrtc->State = HAL_RTC_STATE_ERROR;
746
747 /* Process Unlocked */
748 __HAL_UNLOCK(hrtc);
749
750 return HAL_ERROR;
751 }
752
753 /* Read current Alarm counter in RTC registers */
754 counter_alarm = RTC_ReadAlarmCounter(hrtc);
755
756 /* Set again alarm to match with new time if enabled */
757 if (counter_alarm != RTC_ALARM_RESETVALUE)
758 {
759 if(counter_alarm < counter_time)
760 {
761 /* Add 1 day to alarm counter*/
762 counter_alarm += (uint32_t)(24 * 3600);
763
764 /* Write new Alarm counter in RTC registers */
765 if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
766 {
767 /* Set RTC state */
768 hrtc->State = HAL_RTC_STATE_ERROR;
769
770 /* Process Unlocked */
771 __HAL_UNLOCK(hrtc);
772
773 return HAL_ERROR;
774 }
775 }
776 }
777
778
779 }
780
781 hrtc->State = HAL_RTC_STATE_READY ;
782
783 /* Process Unlocked */
784 __HAL_UNLOCK(hrtc);
785
786 return HAL_OK;
787 }
788
789 /**
790 * @brief Gets RTC current date.
791 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
792 * the configuration information for RTC.
793 * @param sDate: Pointer to Date structure
794 * @param Format: Specifies the format of the entered parameters.
795 * This parameter can be one of the following values:
796 * @arg RTC_FORMAT_BIN: Binary data format
797 * @arg RTC_FORMAT_BCD: BCD data format
798 * @retval HAL status
799 */
800 HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
801 {
802 RTC_TimeTypeDef stime = {0};
803
804 /* Check input parameters */
805 if((hrtc == NULL) || (sDate == NULL))
806 {
807 return HAL_ERROR;
808 }
809
810 /* Check the parameters */
811 assert_param(IS_RTC_FORMAT(Format));
812
813 /* Call HAL_RTC_GetTime function to update date if counter higher than 24 hours */
814 if (HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK)
815 {
816 return HAL_ERROR;
817 }
818
819 /* Fill the structure fields with the read parameters */
820 sDate->WeekDay = hrtc->DateToUpdate.WeekDay;
821 sDate->Year = hrtc->DateToUpdate.Year;
822 sDate->Month = hrtc->DateToUpdate.Month;
823 sDate->Date = hrtc->DateToUpdate.Date;
824
825 /* Check the input parameters format */
826 if(Format != RTC_FORMAT_BIN)
827 {
828 /* Convert the date structure parameters to BCD format */
829 sDate->Year = (uint8_t)RTC_ByteToBcd2(sDate->Year);
830 sDate->Month = (uint8_t)RTC_ByteToBcd2(sDate->Month);
831 sDate->Date = (uint8_t)RTC_ByteToBcd2(sDate->Date);
832 }
833 return HAL_OK;
834 }
835
836 /**
837 * @}
838 */
839
840 /** @defgroup RTC_Exported_Functions_Group3 Alarm functions
841 * @brief RTC Alarm functions
842 *
843 @verbatim
844 ===============================================================================
845 ##### RTC Alarm functions #####
846 ===============================================================================
847
848 [..] This section provides functions allowing to configure Alarm feature
849
850 @endverbatim
851 * @{
852 */
853
854 /**
855 * @brief Sets the specified RTC Alarm.
856 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
857 * the configuration information for RTC.
858 * @param sAlarm: Pointer to Alarm structure
859 * @param Format: Specifies the format of the entered parameters.
860 * This parameter can be one of the following values:
861 * @arg RTC_FORMAT_BIN: Binary data format
862 * @arg RTC_FORMAT_BCD: BCD data format
863 * @retval HAL status
864 */
865 HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
866 {
867 uint32_t counter_alarm = 0, counter_time;
868 RTC_TimeTypeDef stime = {0};
869
870 /* Check input parameters */
871 if((hrtc == NULL) || (sAlarm == NULL))
872 {
873 return HAL_ERROR;
874 }
875
876 /* Check the parameters */
877 assert_param(IS_RTC_FORMAT(Format));
878 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
879
880 /* Process Locked */
881 __HAL_LOCK(hrtc);
882
883 hrtc->State = HAL_RTC_STATE_BUSY;
884
885 /* Call HAL_RTC_GetTime function to update date if counter higher than 24 hours */
886 if (HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK)
887 {
888 return HAL_ERROR;
889 }
890
891 /* Convert time in seconds */
892 counter_time = (uint32_t)(((uint32_t)stime.Hours * 3600) + \
893 ((uint32_t)stime.Minutes * 60) + \
894 ((uint32_t)stime.Seconds));
895
896 if(Format == RTC_FORMAT_BIN)
897 {
898 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
899 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
900 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
901
902 counter_alarm = (uint32_t)(((uint32_t)sAlarm->AlarmTime.Hours * 3600) + \
903 ((uint32_t)sAlarm->AlarmTime.Minutes * 60) + \
904 ((uint32_t)sAlarm->AlarmTime.Seconds));
905 }
906 else
907 {
908 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
909 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
910 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
911
912 counter_alarm = (((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)) * 3600) + \
913 ((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)) * 60) + \
914 ((uint32_t)RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
915 }
916
917 /* Check that requested alarm should expire in the same day (otherwise add 1 day) */
918 if (counter_alarm < counter_time)
919 {
920 /* Add 1 day to alarm counter*/
921 counter_alarm += (uint32_t)(24 * 3600);
922 }
923
924 /* Write Alarm counter in RTC registers */
925 if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
926 {
927 /* Set RTC state */
928 hrtc->State = HAL_RTC_STATE_ERROR;
929
930 /* Process Unlocked */
931 __HAL_UNLOCK(hrtc);
932
933 return HAL_ERROR;
934 }
935 else
936 {
937 hrtc->State = HAL_RTC_STATE_READY;
938
939 __HAL_UNLOCK(hrtc);
940
941 return HAL_OK;
942 }
943 }
944
945 /**
946 * @brief Sets the specified RTC Alarm with Interrupt
947 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
948 * the configuration information for RTC.
949 * @param sAlarm: Pointer to Alarm structure
950 * @param Format: Specifies the format of the entered parameters.
951 * This parameter can be one of the following values:
952 * @arg RTC_FORMAT_BIN: Binary data format
953 * @arg RTC_FORMAT_BCD: BCD data format
954 * @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
955 * @retval HAL status
956 */
957 HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
958 {
959 uint32_t counter_alarm = 0, counter_time;
960 RTC_TimeTypeDef stime = {0};
961
962 /* Check input parameters */
963 if((hrtc == NULL) || (sAlarm == NULL))
964 {
965 return HAL_ERROR;
966 }
967
968 /* Check the parameters */
969 assert_param(IS_RTC_FORMAT(Format));
970 assert_param(IS_RTC_ALARM(sAlarm->Alarm));
971
972 /* Process Locked */
973 __HAL_LOCK(hrtc);
974
975 hrtc->State = HAL_RTC_STATE_BUSY;
976
977 /* Call HAL_RTC_GetTime function to update date if counter higher than 24 hours */
978 if (HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK)
979 {
980 return HAL_ERROR;
981 }
982
983 /* Convert time in seconds */
984 counter_time = (uint32_t)(((uint32_t)stime.Hours * 3600) + \
985 ((uint32_t)stime.Minutes * 60) + \
986 ((uint32_t)stime.Seconds));
987
988 if(Format == RTC_FORMAT_BIN)
989 {
990 assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
991 assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
992 assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
993
994 counter_alarm = (uint32_t)(((uint32_t)sAlarm->AlarmTime.Hours * 3600) + \
995 ((uint32_t)sAlarm->AlarmTime.Minutes * 60) + \
996 ((uint32_t)sAlarm->AlarmTime.Seconds));
997 }
998 else
999 {
1000 assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1001 assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
1002 assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1003
1004 counter_alarm = (((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)) * 3600) + \
1005 ((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)) * 60) + \
1006 ((uint32_t)RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1007 }
1008
1009 /* Check that requested alarm should expire in the same day (otherwise add 1 day) */
1010 if (counter_alarm < counter_time)
1011 {
1012 /* Add 1 day to alarm counter*/
1013 counter_alarm += (uint32_t)(24 * 3600);
1014 }
1015
1016 /* Write alarm counter in RTC registers */
1017 if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
1018 {
1019 /* Set RTC state */
1020 hrtc->State = HAL_RTC_STATE_ERROR;
1021
1022 /* Process Unlocked */
1023 __HAL_UNLOCK(hrtc);
1024
1025 return HAL_ERROR;
1026 }
1027 else
1028 {
1029 /* Clear flag alarm A */
1030 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1031
1032 /* Configure the Alarm interrupt */
1033 __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
1034
1035 /* RTC Alarm Interrupt Configuration: EXTI configuration */
1036 __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1037
1038 __HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
1039
1040 hrtc->State = HAL_RTC_STATE_READY;
1041
1042 __HAL_UNLOCK(hrtc);
1043
1044 return HAL_OK;
1045 }
1046 }
1047
1048 /**
1049 * @brief Gets the RTC Alarm value and masks.
1050 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1051 * the configuration information for RTC.
1052 * @param sAlarm: Pointer to Date structure
1053 * @param Alarm: Specifies the Alarm.
1054 * This parameter can be one of the following values:
1055 * @arg RTC_ALARM_A: Alarm
1056 * @param Format: Specifies the format of the entered parameters.
1057 * This parameter can be one of the following values:
1058 * @arg RTC_FORMAT_BIN: Binary data format
1059 * @arg RTC_FORMAT_BCD: BCD data format
1060 * @retval HAL status
1061 */
1062 HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
1063 {
1064 uint32_t counter_alarm = 0;
1065
1066 /* Check input parameters */
1067 if((hrtc == NULL) || (sAlarm == NULL))
1068 {
1069 return HAL_ERROR;
1070 }
1071
1072 /* Check the parameters */
1073 assert_param(IS_RTC_FORMAT(Format));
1074 assert_param(IS_RTC_ALARM(Alarm));
1075
1076 /* Read Alarm counter in RTC registers */
1077 counter_alarm = RTC_ReadAlarmCounter(hrtc);
1078
1079 /* Fill the structure with the read parameters */
1080 /* Set hours in a day range (between 0 to 24)*/
1081 sAlarm->AlarmTime.Hours = (uint32_t)((counter_alarm / 3600) % 24);
1082 sAlarm->AlarmTime.Minutes = (uint32_t)((counter_alarm % 3600) / 60);
1083 sAlarm->AlarmTime.Seconds = (uint32_t)((counter_alarm % 3600) % 60);
1084
1085 if(Format != RTC_FORMAT_BIN)
1086 {
1087 sAlarm->AlarmTime.Hours = RTC_ByteToBcd2(sAlarm->AlarmTime.Hours);
1088 sAlarm->AlarmTime.Minutes = RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes);
1089 sAlarm->AlarmTime.Seconds = RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds);
1090 }
1091
1092 return HAL_OK;
1093 }
1094
1095 /**
1096 * @brief Deactive the specified RTC Alarm
1097 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1098 * the configuration information for RTC.
1099 * @param Alarm: Specifies the Alarm.
1100 * This parameter can be one of the following values:
1101 * @arg RTC_ALARM_A: AlarmA
1102 * @retval HAL status
1103 */
1104 HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
1105 {
1106 /* Check the parameters */
1107 assert_param(IS_RTC_ALARM(Alarm));
1108
1109 /* Check input parameters */
1110 if(hrtc == NULL)
1111 {
1112 return HAL_ERROR;
1113 }
1114
1115 /* Process Locked */
1116 __HAL_LOCK(hrtc);
1117
1118 hrtc->State = HAL_RTC_STATE_BUSY;
1119
1120 /* In case of interrupt mode is used, the interrupt source must disabled */
1121 __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
1122
1123 /* Set Initialization mode */
1124 if(RTC_EnterInitMode(hrtc) != HAL_OK)
1125 {
1126 /* Set RTC state */
1127 hrtc->State = HAL_RTC_STATE_ERROR;
1128
1129 /* Process Unlocked */
1130 __HAL_UNLOCK(hrtc);
1131
1132 return HAL_ERROR;
1133 }
1134 else
1135 {
1136 /* Clear flag alarm A */
1137 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1138
1139 /* Set to default values ALRH & ALRL registers */
1140 WRITE_REG(hrtc->Instance->ALRH, RTC_ALARM_RESETVALUE_REGISTER);
1141 WRITE_REG(hrtc->Instance->ALRL, RTC_ALARM_RESETVALUE_REGISTER);
1142
1143 /* RTC Alarm Interrupt Configuration: Disable EXTI configuration */
1144 __HAL_RTC_ALARM_EXTI_DISABLE_IT();
1145
1146 /* Wait for synchro */
1147 if(RTC_ExitInitMode(hrtc) != HAL_OK)
1148 {
1149 hrtc->State = HAL_RTC_STATE_ERROR;
1150
1151 /* Process Unlocked */
1152 __HAL_UNLOCK(hrtc);
1153
1154 return HAL_ERROR;
1155 }
1156 }
1157 hrtc->State = HAL_RTC_STATE_READY;
1158
1159 /* Process Unlocked */
1160 __HAL_UNLOCK(hrtc);
1161
1162 return HAL_OK;
1163 }
1164
1165 /**
1166 * @brief This function handles Alarm interrupt request.
1167 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1168 * the configuration information for RTC.
1169 * @retval None
1170 */
1171 void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc)
1172 {
1173 if(__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA))
1174 {
1175 /* Get the status of the Interrupt */
1176 if(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != (uint32_t)RESET)
1177 {
1178 /* AlarmA callback */
1179 HAL_RTC_AlarmAEventCallback(hrtc);
1180
1181 /* Clear the Alarm interrupt pending bit */
1182 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF);
1183 }
1184 }
1185
1186 /* Clear the EXTI's line Flag for RTC Alarm */
1187 __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
1188
1189 /* Change RTC state */
1190 hrtc->State = HAL_RTC_STATE_READY;
1191 }
1192
1193 /**
1194 * @brief Alarm A callback.
1195 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1196 * the configuration information for RTC.
1197 * @retval None
1198 */
1199 __weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
1200 {
1201 /* NOTE : This function Should not be modified, when the callback is needed,
1202 the HAL_RTC_AlarmAEventCallback could be implemented in the user file
1203 */
1204 }
1205
1206 /**
1207 * @brief This function handles AlarmA Polling request.
1208 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1209 * the configuration information for RTC.
1210 * @param Timeout: Timeout duration
1211 * @retval HAL status
1212 */
1213 HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
1214 {
1215 uint32_t tickstart = HAL_GetTick();
1216
1217 /* Check input parameters */
1218 if(hrtc == NULL)
1219 {
1220 return HAL_ERROR;
1221 }
1222
1223 while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
1224 {
1225 if(Timeout != HAL_MAX_DELAY)
1226 {
1227 if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
1228 {
1229 hrtc->State = HAL_RTC_STATE_TIMEOUT;
1230 return HAL_TIMEOUT;
1231 }
1232 }
1233 }
1234
1235 /* Clear the Alarm interrupt pending bit */
1236 __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1237
1238 /* Change RTC state */
1239 hrtc->State = HAL_RTC_STATE_READY;
1240
1241 return HAL_OK;
1242 }
1243
1244 /**
1245 * @}
1246 */
1247
1248 /** @defgroup RTC_Exported_Functions_Group4 Peripheral State functions
1249 * @brief Peripheral State functions
1250 *
1251 @verbatim
1252 ===============================================================================
1253 ##### Peripheral State functions #####
1254 ===============================================================================
1255 [..]
1256 This subsection provides functions allowing to
1257 (+) Get RTC state
1258
1259 @endverbatim
1260 * @{
1261 */
1262 /**
1263 * @brief Returns the RTC state.
1264 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1265 * the configuration information for RTC.
1266 * @retval HAL state
1267 */
1268 HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc)
1269 {
1270 return hrtc->State;
1271 }
1272
1273 /**
1274 * @}
1275 */
1276
1277 /** @defgroup RTC_Exported_Functions_Group5 Peripheral Control functions
1278 * @brief Peripheral Control functions
1279 *
1280 @verbatim
1281 ===============================================================================
1282 ##### Peripheral Control functions #####
1283 ===============================================================================
1284 [..]
1285 This subsection provides functions allowing to
1286 (+) Wait for RTC Time and Date Synchronization
1287
1288 @endverbatim
1289 * @{
1290 */
1291
1292 /**
1293 * @brief Waits until the RTC registers (RTC_CNT, RTC_ALR and RTC_PRL)
1294 * are synchronized with RTC APB clock.
1295 * @note This function must be called before any read operation after an APB reset
1296 * or an APB clock stop.
1297 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1298 * the configuration information for RTC.
1299 * @retval HAL status
1300 */
1301 HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
1302 {
1303 uint32_t tickstart = 0;
1304
1305 /* Check input parameters */
1306 if(hrtc == NULL)
1307 {
1308 return HAL_ERROR;
1309 }
1310
1311 /* Clear RSF flag */
1312 CLEAR_BIT(hrtc->Instance->CRL, RTC_FLAG_RSF);
1313
1314 tickstart = HAL_GetTick();
1315
1316 /* Wait the registers to be synchronised */
1317 while((hrtc->Instance->CRL & RTC_FLAG_RSF) == (uint32_t)RESET)
1318 {
1319 if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1320 {
1321 return HAL_TIMEOUT;
1322 }
1323 }
1324
1325 return HAL_OK;
1326 }
1327
1328 /**
1329 * @}
1330 */
1331
1332
1333 /**
1334 * @}
1335 */
1336
1337 /** @addtogroup RTC_Private_Functions
1338 * @{
1339 */
1340
1341
1342 /**
1343 * @brief Read the time counter available in RTC_CNT registers.
1344 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1345 * the configuration information for RTC.
1346 * @retval Time counter
1347 */
1348 static uint32_t RTC_ReadTimeCounter(RTC_HandleTypeDef* hrtc)
1349 {
1350 uint16_t high1 = 0, high2 = 0, low = 0;
1351 uint32_t timecounter = 0;
1352
1353 high1 = READ_REG(hrtc->Instance->CNTH & RTC_CNTH_RTC_CNT);
1354 low = READ_REG(hrtc->Instance->CNTL & RTC_CNTL_RTC_CNT);
1355 high2 = READ_REG(hrtc->Instance->CNTH & RTC_CNTH_RTC_CNT);
1356
1357 if (high1 != high2)
1358 { /* In this case the counter roll over during reading of CNTL and CNTH registers,
1359 read again CNTL register then return the counter value */
1360 timecounter = (((uint32_t) high2 << 16 ) | READ_REG(hrtc->Instance->CNTL & RTC_CNTL_RTC_CNT));
1361 }
1362 else
1363 { /* No counter roll over during reading of CNTL and CNTH registers, counter
1364 value is equal to first value of CNTL and CNTH */
1365 timecounter = (((uint32_t) high1 << 16 ) | low);
1366 }
1367
1368 return timecounter;
1369 }
1370
1371 /**
1372 * @brief Write the time counter in RTC_CNT registers.
1373 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1374 * the configuration information for RTC.
1375 * @param TimeCounter: Counter to write in RTC_CNT registers
1376 * @retval HAL status
1377 */
1378 static HAL_StatusTypeDef RTC_WriteTimeCounter(RTC_HandleTypeDef* hrtc, uint32_t TimeCounter)
1379 {
1380 HAL_StatusTypeDef status = HAL_OK;
1381
1382 /* Set Initialization mode */
1383 if(RTC_EnterInitMode(hrtc) != HAL_OK)
1384 {
1385 status = HAL_ERROR;
1386 }
1387 else
1388 {
1389 /* Set RTC COUNTER MSB word */
1390 WRITE_REG(hrtc->Instance->CNTH, (TimeCounter >> 16));
1391 /* Set RTC COUNTER LSB word */
1392 WRITE_REG(hrtc->Instance->CNTL, (TimeCounter & RTC_CNTL_RTC_CNT));
1393
1394 /* Wait for synchro */
1395 if(RTC_ExitInitMode(hrtc) != HAL_OK)
1396 {
1397 status = HAL_ERROR;
1398 }
1399 }
1400
1401 return status;
1402 }
1403
1404 /**
1405 * @brief Read the time counter available in RTC_ALR registers.
1406 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1407 * the configuration information for RTC.
1408 * @retval Time counter
1409 */
1410 static uint32_t RTC_ReadAlarmCounter(RTC_HandleTypeDef* hrtc)
1411 {
1412 uint16_t high1 = 0, low = 0;
1413
1414 high1 = READ_REG(hrtc->Instance->ALRH & RTC_CNTH_RTC_CNT);
1415 low = READ_REG(hrtc->Instance->ALRL & RTC_CNTL_RTC_CNT);
1416
1417 return (((uint32_t) high1 << 16 ) | low);
1418 }
1419
1420 /**
1421 * @brief Write the time counter in RTC_ALR registers.
1422 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1423 * the configuration information for RTC.
1424 * @param AlarmCounter: Counter to write in RTC_ALR registers
1425 * @retval HAL status
1426 */
1427 static HAL_StatusTypeDef RTC_WriteAlarmCounter(RTC_HandleTypeDef* hrtc, uint32_t AlarmCounter)
1428 {
1429 HAL_StatusTypeDef status = HAL_OK;
1430
1431 /* Set Initialization mode */
1432 if(RTC_EnterInitMode(hrtc) != HAL_OK)
1433 {
1434 status = HAL_ERROR;
1435 }
1436 else
1437 {
1438 /* Set RTC COUNTER MSB word */
1439 WRITE_REG(hrtc->Instance->ALRH, (AlarmCounter >> 16));
1440 /* Set RTC COUNTER LSB word */
1441 WRITE_REG(hrtc->Instance->ALRL, (AlarmCounter & RTC_ALRL_RTC_ALR));
1442
1443 /* Wait for synchro */
1444 if(RTC_ExitInitMode(hrtc) != HAL_OK)
1445 {
1446 status = HAL_ERROR;
1447 }
1448 }
1449
1450 return status;
1451 }
1452
1453 /**
1454 * @brief Enters the RTC Initialization mode.
1455 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1456 * the configuration information for RTC.
1457 * @retval HAL status
1458 */
1459 static HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc)
1460 {
1461 uint32_t tickstart = 0;
1462
1463 tickstart = HAL_GetTick();
1464 /* Wait till RTC is in INIT state and if Time out is reached exit */
1465 while((hrtc->Instance->CRL & RTC_CRL_RTOFF) == (uint32_t)RESET)
1466 {
1467 if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1468 {
1469 return HAL_TIMEOUT;
1470 }
1471 }
1472
1473 /* Disable the write protection for RTC registers */
1474 __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1475
1476
1477 return HAL_OK;
1478 }
1479
1480 /**
1481 * @brief Exit the RTC Initialization mode.
1482 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1483 * the configuration information for RTC.
1484 * @retval HAL status
1485 */
1486 static HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef* hrtc)
1487 {
1488 uint32_t tickstart = 0;
1489
1490 /* Disable the write protection for RTC registers */
1491 __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1492
1493 tickstart = HAL_GetTick();
1494 /* Wait till RTC is in INIT state and if Time out is reached exit */
1495 while((hrtc->Instance->CRL & RTC_CRL_RTOFF) == (uint32_t)RESET)
1496 {
1497 if((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
1498 {
1499 return HAL_TIMEOUT;
1500 }
1501 }
1502
1503 return HAL_OK;
1504 }
1505
1506 /**
1507 * @brief Converts a 2 digit decimal to BCD format.
1508 * @param Value: Byte to be converted
1509 * @retval Converted byte
1510 */
1511 static uint8_t RTC_ByteToBcd2(uint8_t Value)
1512 {
1513 uint32_t bcdhigh = 0;
1514
1515 while(Value >= 10)
1516 {
1517 bcdhigh++;
1518 Value -= 10;
1519 }
1520
1521 return ((uint8_t)(bcdhigh << 4) | Value);
1522 }
1523
1524 /**
1525 * @brief Converts from 2 digit BCD to Binary.
1526 * @param Value: BCD value to be converted
1527 * @retval Converted word
1528 */
1529 static uint8_t RTC_Bcd2ToByte(uint8_t Value)
1530 {
1531 uint32_t tmp = 0;
1532 tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10;
1533 return (tmp + (Value & (uint8_t)0x0F));
1534 }
1535
1536 /**
1537 * @brief Updates date when time is 23:59:59.
1538 * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
1539 * the configuration information for RTC.
1540 * @param DayElapsed: Number of days elapsed from last date update
1541 * @retval None
1542 */
1543 static void RTC_DateUpdate(RTC_HandleTypeDef* hrtc, uint32_t DayElapsed)
1544 {
1545 uint32_t year = 0, month = 0, day = 0;
1546 uint32_t loop = 0;
1547
1548 /* Get the current year*/
1549 year = hrtc->DateToUpdate.Year;
1550
1551 /* Get the current month and day */
1552 month = hrtc->DateToUpdate.Month;
1553 day = hrtc->DateToUpdate.Date;
1554
1555 for (loop = 0; loop < DayElapsed; loop++)
1556 {
1557 if((month == 1) || (month == 3) || (month == 5) || (month == 7) || \
1558 (month == 8) || (month == 10) || (month == 12))
1559 {
1560 if(day < 31)
1561 {
1562 day++;
1563 }
1564 /* Date structure member: day = 31 */
1565 else
1566 {
1567 if(month != 12)
1568 {
1569 month++;
1570 day = 1;
1571 }
1572 /* Date structure member: day = 31 & month =12 */
1573 else
1574 {
1575 month = 1;
1576 day = 1;
1577 year++;
1578 }
1579 }
1580 }
1581 else if((month == 4) || (month == 6) || (month == 9) || (month == 11))
1582 {
1583 if(day < 30)
1584 {
1585 day++;
1586 }
1587 /* Date structure member: day = 30 */
1588 else
1589 {
1590 month++;
1591 day = 1;
1592 }
1593 }
1594 else if(month == 2)
1595 {
1596 if(day < 28)
1597 {
1598 day++;
1599 }
1600 else if(day == 28)
1601 {
1602 /* Leap year */
1603 if(RTC_IsLeapYear(year))
1604 {
1605 day++;
1606 }
1607 else
1608 {
1609 month++;
1610 day = 1;
1611 }
1612 }
1613 else if(day == 29)
1614 {
1615 month++;
1616 day = 1;
1617 }
1618 }
1619 }
1620
1621 /* Update year */
1622 hrtc->DateToUpdate.Year = year;
1623
1624 /* Update day and month */
1625 hrtc->DateToUpdate.Month = month;
1626 hrtc->DateToUpdate.Date = day;
1627
1628 /* Update day of the week */
1629 hrtc->DateToUpdate.WeekDay = RTC_WeekDayNum(year, month, day);
1630 }
1631
1632 /**
1633 * @brief Check whether the passed year is Leap or not.
1634 * @param nYear year to check
1635 * @retval 1: leap year
1636 * 0: not leap year
1637 */
1638 static uint8_t RTC_IsLeapYear(uint16_t nYear)
1639 {
1640 if((nYear % 4) != 0)
1641 {
1642 return 0;
1643 }
1644
1645 if((nYear % 100) != 0)
1646 {
1647 return 1;
1648 }
1649
1650 if((nYear % 400) == 0)
1651 {
1652 return 1;
1653 }
1654 else
1655 {
1656 return 0;
1657 }
1658 }
1659
1660 /**
1661 * @brief Determines the week number, the day number and the week day number.
1662 * @param nYear year to check
1663 * @param nMonth Month to check
1664 * @param nDay Day to check
1665 * @note Day is calculated with hypothesis that year > 2000
1666 * @retval Value which can take one of the following parameters:
1667 * @arg RTC_WEEKDAY_MONDAY
1668 * @arg RTC_WEEKDAY_TUESDAY
1669 * @arg RTC_WEEKDAY_WEDNESDAY
1670 * @arg RTC_WEEKDAY_THURSDAY
1671 * @arg RTC_WEEKDAY_FRIDAY
1672 * @arg RTC_WEEKDAY_SATURDAY
1673 * @arg RTC_WEEKDAY_SUNDAY
1674 */
1675 static uint8_t RTC_WeekDayNum(uint32_t nYear, uint8_t nMonth, uint8_t nDay)
1676 {
1677 uint32_t year = 0, weekday = 0;
1678
1679 year = 2000 + nYear;
1680
1681 if(nMonth < 3)
1682 {
1683 /*D = { [(23 x month)/9] + day + 4 + year + [(year-1)/4] - [(year-1)/100] + [(year-1)/400] } mod 7*/
1684 weekday = (((23 * nMonth)/9) + nDay + 4 + year + ((year-1)/4) - ((year-1)/100) + ((year-1)/400)) % 7;
1685 }
1686 else
1687 {
1688 /*D = { [(23 x month)/9] + day + 4 + year + [year/4] - [year/100] + [year/400] - 2 } mod 7*/
1689 weekday = (((23 * nMonth)/9) + nDay + 4 + year + (year/4) - (year/100) + (year/400) - 2 ) % 7;
1690 }
1691
1692 return (uint8_t)weekday;
1693 }
1694
1695 /**
1696 * @}
1697 */
1698
1699 #endif /* HAL_RTC_MODULE_ENABLED */
1700 /**
1701 * @}
1702 */
1703
1704 /**
1705 * @}
1706 */
1707
1708 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
Imprint / Impressum