]> git.gir.st - tmk_keyboard.git/blob - tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_NXP/TARGET_LPC11U6X/serial_api.c
Squashed 'tmk_core/' changes from 7967731..b9e0ea0
[tmk_keyboard.git] / tool / mbed / mbed-sdk / libraries / mbed / targets / hal / TARGET_NXP / TARGET_LPC11U6X / serial_api.c
1 /* mbed Microcontroller Library
2 * Copyright (c) 2006-2013 ARM Limited
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // math.h required for floating point operations for baud rate calculation
18 #include "mbed_assert.h"
19 #include <math.h>
20 #include <string.h>
21 #include <stdlib.h>
22
23 #include "serial_api.h"
24 #include "cmsis.h"
25 #include "pinmap.h"
26
27 #if DEVICE_SERIAL
28
29 /******************************************************************************
30 * INITIALIZATION
31 ******************************************************************************/
32
33 #define UART_NUM 5
34
35 // CFG
36 #define UART_EN (0x01<<0)
37
38 // CTL
39 #define TXBRKEN (0x01<<1)
40
41 // STAT
42 #define RXRDY (0x01<<0)
43 #define TXRDY (0x01<<2)
44 #define DELTACTS (0x01<<5)
45 #define RXBRK (0x01<<10)
46 #define DELTARXBRK (0x01<<11)
47
48 static const PinMap PinMap_UART_TX[] = {
49 {P0_19, UART_0, 1},
50 {P1_18, UART_0, 2},
51 {P1_27, UART_0, 2},
52 {P1_8 , UART_1, 2},
53 {P1_0 , UART_2, 3},
54 {P1_23, UART_2, 3},
55 {P2_4 , UART_3, 1},
56 {P2_12, UART_4, 1},
57 { NC , NC , 0}
58 };
59
60 static const PinMap PinMap_UART_RX[] = {
61 {P0_18, UART_0, 1},
62 {P1_17, UART_0, 2},
63 {P1_26, UART_0, 2},
64 {P1_2 , UART_1, 3},
65 {P0_20, UART_2, 2},
66 {P1_6 , UART_2, 2},
67 {P2_3 , UART_3, 1},
68 {P2_11, UART_4, 1},
69 {NC , NC , 0}
70 };
71
72 static uint32_t serial_irq_ids[UART_NUM] = {0};
73 static uart_irq_handler irq_handler;
74
75 int stdio_uart_inited = 0;
76 serial_t stdio_uart;
77
78 void serial_init(serial_t *obj, PinName tx, PinName rx) {
79 int is_stdio_uart = 0;
80
81 // determine the UART to use
82 UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
83 UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
84 UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
85 MBED_ASSERT((int)uart != NC);
86
87 switch (uart) {
88 case UART_0:
89 obj->index = 0;
90 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 12);
91 break;
92 case UART_1:
93 obj->index = 1;
94 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 20);
95 LPC_SYSCON->PRESETCTRL |= (1 << 5);
96 break;
97 case UART_2:
98 obj->index = 2;
99 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 21);
100 LPC_SYSCON->PRESETCTRL |= (1 << 6);
101 break;
102 case UART_3:
103 obj->index = 3;
104 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 22);
105 LPC_SYSCON->PRESETCTRL |= (1 << 7);
106 break;
107 case UART_4:
108 obj->index = 4;
109 LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 22);
110 LPC_SYSCON->PRESETCTRL |= (1 << 8);
111 break;
112 }
113
114 if (obj->index == 0)
115 obj->uart = (LPC_USART0_Type *)uart;
116 else
117 obj->mini_uart = (LPC_USART4_Type *)uart;
118
119 if (obj->index == 0) {
120 // enable fifos and default rx trigger level
121 obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
122 | 0 << 1 // Rx Fifo Clear
123 | 0 << 2 // Tx Fifo Clear
124 | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars
125 // disable irqs
126 obj->uart->IER = 0 << 0 // Rx Data available irq enable
127 | 0 << 1 // Tx Fifo empty irq enable
128 | 0 << 2; // Rx Line Status irq enable
129 }
130 else {
131 // Clear all status bits
132 obj->mini_uart->STAT = (DELTACTS | DELTARXBRK);
133 // Enable UART
134 obj->mini_uart->CFG |= UART_EN;
135 }
136 // set default baud rate and format
137 serial_baud (obj, 9600);
138 serial_format(obj, 8, ParityNone, 1);
139
140 // pinout the chosen uart
141 pinmap_pinout(tx, PinMap_UART_TX);
142 pinmap_pinout(rx, PinMap_UART_RX);
143
144 // set rx/tx pins in PullUp mode
145 if (tx != NC) {
146 pin_mode(tx, PullUp);
147 }
148 if (rx != NC) {
149 pin_mode(rx, PullUp);
150 }
151
152 is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
153
154 if (is_stdio_uart && (obj->index == 0)) {
155 stdio_uart_inited = 1;
156 memcpy(&stdio_uart, obj, sizeof(serial_t));
157 }
158 }
159
160 void serial_free(serial_t *obj) {
161 serial_irq_ids[obj->index] = 0;
162 }
163
164 // serial_baud
165 // set the baud rate, taking in to account the current SystemFrequency
166 void serial_baud(serial_t *obj, int baudrate) {
167 LPC_SYSCON->USART0CLKDIV = 1;
168 LPC_SYSCON->FRGCLKDIV = 1;
169
170 if (obj->index == 0) {
171 uint32_t PCLK = SystemCoreClock;
172 // First we check to see if the basic divide with no DivAddVal/MulVal
173 // ratio gives us an integer result. If it does, we set DivAddVal = 0,
174 // MulVal = 1. Otherwise, we search the valid ratio value range to find
175 // the closest match. This could be more elegant, using search methods
176 // and/or lookup tables, but the brute force method is not that much
177 // slower, and is more maintainable.
178 uint16_t DL = PCLK / (16 * baudrate);
179
180 uint8_t DivAddVal = 0;
181 uint8_t MulVal = 1;
182 int hit = 0;
183 uint16_t dlv;
184 uint8_t mv, dav;
185 if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder
186 int err_best = baudrate, b;
187 for (mv = 1; mv < 16 && !hit; mv++)
188 {
189 for (dav = 0; dav < mv; dav++)
190 {
191 // baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
192 // solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul))
193 // mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding
194 // for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision
195 // note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding
196
197 if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom
198 dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2;
199 else // 2 bits headroom, use more precision
200 dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2;
201
202 // datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood
203 if (dlv == 0)
204 dlv = 1;
205
206 // datasheet says if dav > 0 then DL must be >= 2
207 if ((dav > 0) && (dlv < 2))
208 dlv = 2;
209
210 // integer rearrangement of the baudrate equation (with rounding)
211 b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2;
212
213 // check to see how we went
214 b = abs(b - baudrate);
215 if (b < err_best)
216 {
217 err_best = b;
218
219 DL = dlv;
220 MulVal = mv;
221 DivAddVal = dav;
222
223 if (b == baudrate)
224 {
225 hit = 1;
226 break;
227 }
228 }
229 }
230 }
231 }
232
233 // set LCR[DLAB] to enable writing to divider registers
234 obj->uart->LCR |= (1 << 7);
235
236 // set divider values
237 obj->uart->DLM = (DL >> 8) & 0xFF;
238 obj->uart->DLL = (DL >> 0) & 0xFF;
239 obj->uart->FDR = (uint32_t) DivAddVal << 0
240 | (uint32_t) MulVal << 4;
241
242 // clear LCR[DLAB]
243 obj->uart->LCR &= ~(1 << 7);
244 }
245 else {
246 uint32_t UARTSysClk = SystemCoreClock / LPC_SYSCON->FRGCLKDIV;
247 obj->mini_uart->BRG = UARTSysClk / 16 / baudrate - 1;
248
249 LPC_SYSCON->UARTFRGDIV = 0xFF;
250 LPC_SYSCON->UARTFRGMULT = ( ((UARTSysClk / 16) * (LPC_SYSCON->UARTFRGDIV + 1)) /
251 (baudrate * (obj->mini_uart->BRG + 1))
252 ) - (LPC_SYSCON->UARTFRGDIV + 1);
253 }
254 }
255
256 void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
257 MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits
258
259 stop_bits -= 1;
260
261 if (obj->index == 0) {
262 MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 0: 5 data bits ... 3: 8 data bits
263 MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) ||
264 (parity == ParityForced1) || (parity == ParityForced0));
265 data_bits -= 5;
266
267 int parity_enable, parity_select;
268 switch (parity) {
269 case ParityNone: parity_enable = 0; parity_select = 0; break;
270 case ParityOdd : parity_enable = 1; parity_select = 0; break;
271 case ParityEven: parity_enable = 1; parity_select = 1; break;
272 case ParityForced1: parity_enable = 1; parity_select = 2; break;
273 case ParityForced0: parity_enable = 1; parity_select = 3; break;
274 default:
275 return;
276 }
277
278 obj->uart->LCR = data_bits << 0
279 | stop_bits << 2
280 | parity_enable << 3
281 | parity_select << 4;
282 }
283 else {
284 // 0: 7 data bits ... 2: 9 data bits
285 MBED_ASSERT((data_bits > 6) && (data_bits < 10));
286 MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven));
287 data_bits -= 7;
288
289 int paritysel;
290 switch (parity) {
291 case ParityNone: paritysel = 0; break;
292 case ParityEven: paritysel = 2; break;
293 case ParityOdd : paritysel = 3; break;
294 default:
295 return;
296 }
297 obj->mini_uart->CFG = (data_bits << 2)
298 | (paritysel << 4)
299 | (stop_bits << 6)
300 | UART_EN;
301 }
302 }
303
304 /******************************************************************************
305 * INTERRUPTS HANDLING
306 ******************************************************************************/
307 static inline void uart_irq(uint32_t iir, uint32_t index) {
308 SerialIrq irq_type;
309 switch (iir) {
310 case 1: irq_type = TxIrq; break;
311 case 2: irq_type = RxIrq; break;
312 default: return;
313 }
314
315 if (serial_irq_ids[index] != 0)
316 irq_handler(serial_irq_ids[index], irq_type);
317 }
318
319 void uart0_irq()
320 {
321 uart_irq((LPC_USART0->IIR >> 1) & 0x7, 0);
322 }
323
324 void uart1_irq()
325 {
326 uart_irq((LPC_USART1->STAT & (1 << 2)) ? 2 : 1, 1);
327 }
328
329 void uart2_irq()
330 {
331 uart_irq((LPC_USART1->STAT & (1 << 2)) ? 2 : 1, 2);
332 }
333
334 void uart3_irq()
335 {
336 uart_irq((LPC_USART1->STAT & (1 << 2)) ? 2 : 1, 3);
337 }
338
339 void uart4_irq()
340 {
341 uart_irq((LPC_USART1->STAT & (1 << 2)) ? 2 : 1, 4);
342 }
343
344 void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
345 irq_handler = handler;
346 serial_irq_ids[obj->index] = id;
347 }
348
349 void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
350 IRQn_Type irq_n = (IRQn_Type)0;
351 uint32_t vector = 0;
352 switch ((int)obj->uart) {
353 case UART_0: irq_n = USART0_IRQn; vector = (uint32_t)&uart0_irq; break;
354 case UART_1: irq_n = USART1_4_IRQn; vector = (uint32_t)&uart1_irq; break;
355 case UART_2: irq_n = USART2_3_IRQn; vector = (uint32_t)&uart2_irq; break;
356 case UART_3: irq_n = USART2_3_IRQn; vector = (uint32_t)&uart3_irq; break;
357 case UART_4: irq_n = USART1_4_IRQn; vector = (uint32_t)&uart4_irq; break;
358 }
359
360 if (enable) {
361 if (obj->index == 0) {
362 obj->uart->IER |= (1 << irq);
363 }
364 else {
365 obj->mini_uart->INTENSET = (1 << ((irq == RxIrq) ? 0 : 2));
366 }
367 NVIC_SetVector(irq_n, vector);
368 NVIC_EnableIRQ(irq_n);
369 } else { // disable
370 int all_disabled = 0;
371 SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
372
373 if (obj->index == 0) {
374 obj->uart->IER &= ~(1 << irq);
375 all_disabled = (obj->uart->IER & (1 << other_irq)) == 0;
376 }
377 else {
378 obj->mini_uart->INTENSET &= ~(1 << ((irq == RxIrq) ? 0 : 2));
379 all_disabled = (obj->mini_uart->INTENSET & (1 << ((other_irq == RxIrq) ? 0 : 2))) == 0;
380 }
381
382 if (all_disabled)
383 NVIC_DisableIRQ(irq_n);
384 }
385 }
386
387 /******************************************************************************
388 * READ/WRITE
389 ******************************************************************************/
390 int serial_getc(serial_t *obj) {
391 while (!serial_readable(obj));
392 if (obj->index == 0) {
393 return obj->uart->RBR;
394 }
395 else {
396 return obj->mini_uart->RXDAT;
397 }
398 }
399
400 void serial_putc(serial_t *obj, int c) {
401 while (!serial_writable(obj));
402 if (obj->index == 0) {
403 obj->uart->THR = c;
404 }
405 else {
406 obj->mini_uart->TXDAT = c;
407 }
408 }
409
410 int serial_readable(serial_t *obj) {
411 if (obj->index == 0) {
412 return obj->uart->LSR & 0x01;
413 }
414 else {
415 return obj->mini_uart->STAT & RXRDY;
416 }
417 }
418
419 int serial_writable(serial_t *obj) {
420 if (obj->index == 0) {
421 return obj->uart->LSR & 0x20;
422 }
423 else {
424 return obj->mini_uart->STAT & TXRDY;
425 }
426 }
427
428 void serial_clear(serial_t *obj) {
429 if (obj->index == 0) {
430 obj->uart->FCR = 1 << 1 // rx FIFO reset
431 | 1 << 2 // tx FIFO reset
432 | 0 << 6; // interrupt depth
433 }
434 else {
435 obj->mini_uart->STAT = 0;
436 }
437 }
438
439 void serial_pinout_tx(PinName tx) {
440 pinmap_pinout(tx, PinMap_UART_TX);
441 }
442
443 void serial_break_set(serial_t *obj) {
444 if (obj->index == 0) {
445 obj->uart->LCR |= (1 << 6);
446 }
447 else {
448 obj->mini_uart->CTL |= TXBRKEN;
449 }
450 }
451
452 void serial_break_clear(serial_t *obj) {
453 if (obj->index == 0) {
454 obj->uart->LCR &= ~(1 << 6);
455 }
456 else {
457 obj->mini_uart->CTL &= ~TXBRKEN;
458 }
459 }
460
461
462 #endif
Imprint / Impressum