]> git.gir.st - tmk_keyboard.git/blob - tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_NXP/TARGET_LPC43XX/serial_api.c
Squashed 'tmk_core/' changes from 7967731..b9e0ea0
[tmk_keyboard.git] / tool / mbed / mbed-sdk / libraries / mbed / targets / hal / TARGET_NXP / TARGET_LPC43XX / serial_api.c
1 /* mbed Microcontroller Library
2 * Copyright (c) 2006-2013 ARM Limited
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 * Ported to NXP LPC43XX by Micromint USA <support@micromint.com>
17 */
18 // math.h required for floating point operations for baud rate calculation
19 #include <math.h>
20 #include <string.h>
21 #include <stdlib.h>
22
23 #include "serial_api.h"
24 #include "cmsis.h"
25 #include "pinmap.h"
26 #include "mbed_error.h"
27 #include "gpio_api.h"
28
29 /******************************************************************************
30 * INITIALIZATION
31 ******************************************************************************/
32 #define UART_NUM 4
33
34 // SCU mode for UART pins
35 #define SCU_PINIO_UART_TX SCU_MODE_PULLDOWN
36 #define SCU_PINIO_UART_RX SCU_PINIO_PULLNONE
37
38 static const PinMap PinMap_UART_TX[] = {
39 {P1_13, UART_1, (SCU_PINIO_UART_TX | 1)},
40 {P1_15, UART_2, (SCU_PINIO_UART_TX | 1)},
41 {P2_0, UART_0, (SCU_PINIO_UART_TX | 1)},
42 {P2_3, UART_3, (SCU_PINIO_UART_TX | 2)},
43 {P2_10, UART_2, (SCU_PINIO_UART_TX | 2)},
44 {P3_4, UART_1, (SCU_PINIO_UART_TX | 4)},
45 {P4_1, UART_3, (SCU_PINIO_UART_TX | 6)},
46 {P5_6, UART_1, (SCU_PINIO_UART_TX | 4)},
47 {P6_4, UART_0, (SCU_PINIO_UART_TX | 2)},
48 {P7_1, UART_2, (SCU_PINIO_UART_TX | 6)},
49 {P9_3, UART_3, (SCU_PINIO_UART_TX | 7)},
50 {P9_5, UART_0, (SCU_PINIO_UART_TX | 7)},
51 {PA_1, UART_2, (SCU_PINIO_UART_TX | 3)},
52 {PC_13, UART_1, (SCU_PINIO_UART_TX | 2)},
53 {PE_11, UART_1, (SCU_PINIO_UART_TX | 2)},
54 {PF_2, UART_3, (SCU_PINIO_UART_TX | 1)},
55 {PF_10, UART_0, (SCU_PINIO_UART_TX | 1)},
56 {NC, NC, 0}
57 };
58
59 static const PinMap PinMap_UART_RX[] = {
60 {P1_14, UART_1, (SCU_PINIO_UART_RX | 1)},
61 {P1_16, UART_2, (SCU_PINIO_UART_RX | 1)},
62 {P2_1, UART_0, (SCU_PINIO_UART_RX | 1)},
63 {P2_4, UART_3, (SCU_PINIO_UART_RX | 2)},
64 {P2_11, UART_2, (SCU_PINIO_UART_RX | 2)},
65 {P3_5, UART_1, (SCU_PINIO_UART_RX | 4)},
66 {P4_2, UART_3, (SCU_PINIO_UART_RX | 6)},
67 {P5_7, UART_1, (SCU_PINIO_UART_RX | 4)},
68 {P6_5, UART_0, (SCU_PINIO_UART_RX | 2)},
69 {P7_2, UART_2, (SCU_PINIO_UART_RX | 6)},
70 {P9_4, UART_3, (SCU_PINIO_UART_RX | 7)},
71 {P9_6, UART_0, (SCU_PINIO_UART_RX | 7)},
72 {PA_2, UART_2, (SCU_PINIO_UART_RX | 3)},
73 {PC_14, UART_1, (SCU_PINIO_UART_RX | 2)},
74 {PE_12, UART_1, (SCU_PINIO_UART_RX | 2)},
75 {PF_3, UART_3, (SCU_PINIO_UART_RX | 1)},
76 {PF_11, UART_0, (SCU_PINIO_UART_RX | 1)},
77 {NC, NC, 0}
78 };
79
80 #if (DEVICE_SERIAL_FC)
81 // RTS/CTS PinMap for flow control
82 static const PinMap PinMap_UART_RTS[] = {
83 {P1_9, UART_1, (SCU_PINIO_FAST | 1)},
84 {P5_2, UART_1, (SCU_PINIO_FAST | 4)},
85 {PC_3, UART_1, (SCU_PINIO_FAST | 2)},
86 {PE_5, UART_1, (SCU_PINIO_FAST | 2)},
87 {NC, NC, 0}
88 };
89
90 static const PinMap PinMap_UART_CTS[] = {
91 {P1_11, UART_1, (SCU_PINIO_FAST | 1)},
92 {P5_4, UART_1, (SCU_PINIO_FAST | 4),
93 {PC_2, UART_1, (SCU_PINIO_FAST | 2)},
94 {PE_7, UART_1, (SCU_PINIO_FAST | 2)},
95 {NC, NC, 0}
96 };
97 #endif
98
99 static uart_irq_handler irq_handler;
100
101 int stdio_uart_inited = 0;
102 serial_t stdio_uart;
103
104 struct serial_global_data_s {
105 uint32_t serial_irq_id;
106 gpio_t sw_rts, sw_cts;
107 uint8_t count, rx_irq_set_flow, rx_irq_set_api;
108 };
109
110 static struct serial_global_data_s uart_data[UART_NUM];
111
112 void serial_init(serial_t *obj, PinName tx, PinName rx) {
113 int is_stdio_uart = 0;
114
115 // determine the UART to use
116 UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
117 UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
118 UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
119 if ((int)uart == NC) {
120 error("Serial pinout mapping failed");
121 }
122
123 obj->uart = (LPC_USART_T *)uart;
124
125 // enable fifos and default rx trigger level
126 obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
127 | 0 << 1 // Rx Fifo Reset
128 | 0 << 2 // Tx Fifo Reset
129 | 0 << 6; // Rx irq trigger level - 0 = 1 char, 1 = 4 chars, 2 = 8 chars, 3 = 14 chars
130
131 // disable irqs
132 obj->uart->IER = 0 << 0 // Rx Data available irq enable
133 | 0 << 1 // Tx Fifo empty irq enable
134 | 0 << 2; // Rx Line Status irq enable
135
136 // set default baud rate and format
137 is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);
138 serial_baud (obj, is_stdio_uart ? 115200 : 9600);
139 serial_format(obj, 8, ParityNone, 1);
140
141 // pinout the chosen uart
142 pinmap_pinout(tx, PinMap_UART_TX);
143 pinmap_pinout(rx, PinMap_UART_RX);
144
145 // set rx/tx pins in PullUp mode
146 if (tx != NC) {
147 pin_mode(tx, PullUp);
148 }
149 if (rx != NC) {
150 pin_mode(rx, PullUp);
151 }
152
153 switch (uart) {
154 case UART_0: obj->index = 0; break;
155 case UART_1: obj->index = 1; break;
156 case UART_2: obj->index = 2; break;
157 case UART_3: obj->index = 3; break;
158 }
159 uart_data[obj->index].sw_rts.pin = NC;
160 uart_data[obj->index].sw_cts.pin = NC;
161 serial_set_flow_control(obj, FlowControlNone, NC, NC);
162
163 if (is_stdio_uart) {
164 stdio_uart_inited = 1;
165 memcpy(&stdio_uart, obj, sizeof(serial_t));
166 }
167 }
168
169 void serial_free(serial_t *obj) {
170 uart_data[obj->index].serial_irq_id = 0;
171 }
172
173 // serial_baud
174 // set the baud rate, taking in to account the current SystemFrequency
175 void serial_baud(serial_t *obj, int baudrate) {
176 uint32_t PCLK = SystemCoreClock;
177
178 // First we check to see if the basic divide with no DivAddVal/MulVal
179 // ratio gives us an integer result. If it does, we set DivAddVal = 0,
180 // MulVal = 1. Otherwise, we search the valid ratio value range to find
181 // the closest match. This could be more elegant, using search methods
182 // and/or lookup tables, but the brute force method is not that much
183 // slower, and is more maintainable.
184 uint16_t DL = PCLK / (16 * baudrate);
185
186 uint8_t DivAddVal = 0;
187 uint8_t MulVal = 1;
188 int hit = 0;
189 uint16_t dlv;
190 uint8_t mv, dav;
191 if ((PCLK % (16 * baudrate)) != 0) { // Checking for zero remainder
192 int err_best = baudrate, b;
193 for (mv = 1; mv < 16 && !hit; mv++)
194 {
195 for (dav = 0; dav < mv; dav++)
196 {
197 // baudrate = PCLK / (16 * dlv * (1 + (DivAdd / Mul))
198 // solving for dlv, we get dlv = mul * PCLK / (16 * baudrate * (divadd + mul))
199 // mul has 4 bits, PCLK has 27 so we have 1 bit headroom which can be used for rounding
200 // for many values of mul and PCLK we have 2 or more bits of headroom which can be used to improve precision
201 // note: X / 32 doesn't round correctly. Instead, we use ((X / 16) + 1) / 2 for correct rounding
202
203 if ((mv * PCLK * 2) & 0x80000000) // 1 bit headroom
204 dlv = ((((2 * mv * PCLK) / (baudrate * (dav + mv))) / 16) + 1) / 2;
205 else // 2 bits headroom, use more precision
206 dlv = ((((4 * mv * PCLK) / (baudrate * (dav + mv))) / 32) + 1) / 2;
207
208 // datasheet says if DLL==DLM==0, then 1 is used instead since divide by zero is ungood
209 if (dlv == 0)
210 dlv = 1;
211
212 // datasheet says if dav > 0 then DL must be >= 2
213 if ((dav > 0) && (dlv < 2))
214 dlv = 2;
215
216 // integer rearrangement of the baudrate equation (with rounding)
217 b = ((PCLK * mv / (dlv * (dav + mv) * 8)) + 1) / 2;
218
219 // check to see how we went
220 b = abs(b - baudrate);
221 if (b < err_best)
222 {
223 err_best = b;
224
225 DL = dlv;
226 MulVal = mv;
227 DivAddVal = dav;
228
229 if (b == baudrate)
230 {
231 hit = 1;
232 break;
233 }
234 }
235 }
236 }
237 }
238
239 // set LCR[DLAB] to enable writing to divider registers
240 obj->uart->LCR |= (1 << 7);
241
242 // set divider values
243 obj->uart->DLM = (DL >> 8) & 0xFF;
244 obj->uart->DLL = (DL >> 0) & 0xFF;
245 obj->uart->FDR = (uint32_t) DivAddVal << 0
246 | (uint32_t) MulVal << 4;
247
248 // clear LCR[DLAB]
249 obj->uart->LCR &= ~(1 << 7);
250 }
251
252 void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
253 // 0: 1 stop bits, 1: 2 stop bits
254 if (stop_bits != 1 && stop_bits != 2) {
255 error("Invalid stop bits specified");
256 }
257 stop_bits -= 1;
258
259 // 0: 5 data bits ... 3: 8 data bits
260 if (data_bits < 5 || data_bits > 8) {
261 error("Invalid number of bits (%d) in serial format, should be 5..8", data_bits);
262 }
263 data_bits -= 5;
264
265 int parity_enable, parity_select;
266 switch (parity) {
267 case ParityNone: parity_enable = 0; parity_select = 0; break;
268 case ParityOdd : parity_enable = 1; parity_select = 0; break;
269 case ParityEven: parity_enable = 1; parity_select = 1; break;
270 case ParityForced1: parity_enable = 1; parity_select = 2; break;
271 case ParityForced0: parity_enable = 1; parity_select = 3; break;
272 default:
273 error("Invalid serial parity setting");
274 return;
275 }
276
277 obj->uart->LCR = data_bits << 0
278 | stop_bits << 2
279 | parity_enable << 3
280 | parity_select << 4;
281 }
282
283 /******************************************************************************
284 * INTERRUPTS HANDLING
285 ******************************************************************************/
286 static inline void uart_irq(uint32_t iir, uint32_t index, LPC_USART_T *puart) {
287 // [Chapter 14] LPC17xx UART0/2/3: UARTn Interrupt Handling
288 SerialIrq irq_type;
289 switch (iir) {
290 case 1: irq_type = TxIrq; break;
291 case 2: irq_type = RxIrq; break;
292 default: return;
293 }
294 if ((RxIrq == irq_type) && (NC != uart_data[index].sw_rts.pin)) {
295 gpio_write(&uart_data[index].sw_rts, 1);
296 // Disable interrupt if it wasn't enabled by other part of the application
297 if (!uart_data[index].rx_irq_set_api)
298 puart->IER &= ~(1 << RxIrq);
299 }
300 if (uart_data[index].serial_irq_id != 0)
301 if ((irq_type != RxIrq) || (uart_data[index].rx_irq_set_api))
302 irq_handler(uart_data[index].serial_irq_id, irq_type);
303 }
304
305 void uart0_irq() {uart_irq((LPC_USART0->IIR >> 1) & 0x7, 0, (LPC_USART_T*)LPC_USART0);}
306 void uart1_irq() {uart_irq((LPC_UART1->IIR >> 1) & 0x7, 1, (LPC_USART_T*)LPC_UART1);}
307 void uart2_irq() {uart_irq((LPC_USART2->IIR >> 1) & 0x7, 2, (LPC_USART_T*)LPC_USART2);}
308 void uart3_irq() {uart_irq((LPC_USART3->IIR >> 1) & 0x7, 3, (LPC_USART_T*)LPC_USART3);}
309
310 void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
311 irq_handler = handler;
312 uart_data[obj->index].serial_irq_id = id;
313 }
314
315 static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) {
316 IRQn_Type irq_n = (IRQn_Type)0;
317 uint32_t vector = 0;
318 switch ((int)obj->uart) {
319 case UART_0: irq_n=USART0_IRQn; vector = (uint32_t)&uart0_irq; break;
320 case UART_1: irq_n=UART1_IRQn; vector = (uint32_t)&uart1_irq; break;
321 case UART_2: irq_n=USART2_IRQn; vector = (uint32_t)&uart2_irq; break;
322 case UART_3: irq_n=USART3_IRQn; vector = (uint32_t)&uart3_irq; break;
323 }
324
325 if (enable) {
326 obj->uart->IER |= 1 << irq;
327 NVIC_SetVector(irq_n, vector);
328 NVIC_EnableIRQ(irq_n);
329 } else if ((TxIrq == irq) || (uart_data[obj->index].rx_irq_set_api + uart_data[obj->index].rx_irq_set_flow == 0)) { // disable
330 int all_disabled = 0;
331 SerialIrq other_irq = (irq == RxIrq) ? (TxIrq) : (RxIrq);
332 obj->uart->IER &= ~(1 << irq);
333 all_disabled = (obj->uart->IER & (1 << other_irq)) == 0;
334 if (all_disabled)
335 NVIC_DisableIRQ(irq_n);
336 }
337 }
338
339 void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
340 if (RxIrq == irq)
341 uart_data[obj->index].rx_irq_set_api = enable;
342 serial_irq_set_internal(obj, irq, enable);
343 }
344
345 #if (DEVICE_SERIAL_FC)
346 static void serial_flow_irq_set(serial_t *obj, uint32_t enable) {
347 uart_data[obj->index].rx_irq_set_flow = enable;
348 serial_irq_set_internal(obj, RxIrq, enable);
349 }
350 #endif
351
352 /******************************************************************************
353 * READ/WRITE
354 ******************************************************************************/
355 int serial_getc(serial_t *obj) {
356 while (!serial_readable(obj));
357 int data = obj->uart->RBR;
358 if (NC != uart_data[obj->index].sw_rts.pin) {
359 gpio_write(&uart_data[obj->index].sw_rts, 0);
360 obj->uart->IER |= 1 << RxIrq;
361 }
362 return data;
363 }
364
365 void serial_putc(serial_t *obj, int c) {
366 while (!serial_writable(obj));
367 obj->uart->THR = c;
368 uart_data[obj->index].count++;
369 }
370
371 int serial_readable(serial_t *obj) {
372 return obj->uart->LSR & 0x01;
373 }
374
375 int serial_writable(serial_t *obj) {
376 int isWritable = 1;
377 if (NC != uart_data[obj->index].sw_cts.pin)
378 isWritable = (gpio_read(&uart_data[obj->index].sw_cts) == 0) && (obj->uart->LSR & 0x40); //If flow control: writable if CTS low + UART done
379 else {
380 if (obj->uart->LSR & 0x20)
381 uart_data[obj->index].count = 0;
382 else if (uart_data[obj->index].count >= 16)
383 isWritable = 0;
384 }
385 return isWritable;
386 }
387
388 void serial_clear(serial_t *obj) {
389 obj->uart->FCR = 1 << 0 // FIFO Enable - 0 = Disables, 1 = Enabled
390 | 1 << 1 // rx FIFO reset
391 | 1 << 2 // tx FIFO reset
392 | 0 << 6; // interrupt depth
393 }
394
395 void serial_pinout_tx(PinName tx) {
396 pinmap_pinout(tx, PinMap_UART_TX);
397 }
398
399 void serial_break_set(serial_t *obj) {
400 obj->uart->LCR |= (1 << 6);
401 }
402
403 void serial_break_clear(serial_t *obj) {
404 obj->uart->LCR &= ~(1 << 6);
405 }
406
407 void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) {
408 #if (DEVICE_SERIAL_FC)
409 #endif
410 }
Imprint / Impressum