]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_conv_partial_fast_opt_q15.c
Merge commit '5a0132f1c1c9a14fd2941f0a5e29bbf5e31da20c' into master-core-pull
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_conv_partial_fast_opt_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_conv_partial_fast_opt_q15.c
9 *
10 * Description: Fast Q15 Partial convolution.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup PartialConv
49 * @{
50 */
51
52 /**
53 * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
54 * @param[in] *pSrcA points to the first input sequence.
55 * @param[in] srcALen length of the first input sequence.
56 * @param[in] *pSrcB points to the second input sequence.
57 * @param[in] srcBLen length of the second input sequence.
58 * @param[out] *pDst points to the location where the output result is written.
59 * @param[in] firstIndex is the first output sample to start with.
60 * @param[in] numPoints is the number of output points to be computed.
61 * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
62 * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
63 * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
64 *
65 * See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.
66 *
67 * \par Restrictions
68 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
69 * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
70 *
71 */
72
73 #ifndef UNALIGNED_SUPPORT_DISABLE
74
75 arm_status arm_conv_partial_fast_opt_q15(
76 q15_t * pSrcA,
77 uint32_t srcALen,
78 q15_t * pSrcB,
79 uint32_t srcBLen,
80 q15_t * pDst,
81 uint32_t firstIndex,
82 uint32_t numPoints,
83 q15_t * pScratch1,
84 q15_t * pScratch2)
85 {
86
87 q15_t *pOut = pDst; /* output pointer */
88 q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
89 q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
90 q31_t acc0, acc1, acc2, acc3; /* Accumulator */
91 q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */
92 q31_t y1, y2; /* State variables */
93 q15_t *pIn1; /* inputA pointer */
94 q15_t *pIn2; /* inputB pointer */
95 q15_t *px; /* Intermediate inputA pointer */
96 q15_t *py; /* Intermediate inputB pointer */
97 uint32_t j, k, blkCnt; /* loop counter */
98 arm_status status;
99
100 uint32_t tapCnt; /* loop count */
101
102 /* Check for range of output samples to be calculated */
103 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
104 {
105 /* Set status as ARM_MATH_ARGUMENT_ERROR */
106 status = ARM_MATH_ARGUMENT_ERROR;
107 }
108 else
109 {
110
111 /* The algorithm implementation is based on the lengths of the inputs. */
112 /* srcB is always made to slide across srcA. */
113 /* So srcBLen is always considered as shorter or equal to srcALen */
114 if(srcALen >= srcBLen)
115 {
116 /* Initialization of inputA pointer */
117 pIn1 = pSrcA;
118
119 /* Initialization of inputB pointer */
120 pIn2 = pSrcB;
121 }
122 else
123 {
124 /* Initialization of inputA pointer */
125 pIn1 = pSrcB;
126
127 /* Initialization of inputB pointer */
128 pIn2 = pSrcA;
129
130 /* srcBLen is always considered as shorter or equal to srcALen */
131 j = srcBLen;
132 srcBLen = srcALen;
133 srcALen = j;
134 }
135
136 /* Temporary pointer for scratch2 */
137 py = pScratch2;
138
139 /* pointer to take end of scratch2 buffer */
140 pScr2 = pScratch2 + srcBLen - 1;
141
142 /* points to smaller length sequence */
143 px = pIn2;
144
145 /* Apply loop unrolling and do 4 Copies simultaneously. */
146 k = srcBLen >> 2u;
147
148 /* First part of the processing with loop unrolling copies 4 data points at a time.
149 ** a second loop below copies for the remaining 1 to 3 samples. */
150
151 /* Copy smaller length input sequence in reverse order into second scratch buffer */
152 while(k > 0u)
153 {
154 /* copy second buffer in reversal manner */
155 *pScr2-- = *px++;
156 *pScr2-- = *px++;
157 *pScr2-- = *px++;
158 *pScr2-- = *px++;
159
160 /* Decrement the loop counter */
161 k--;
162 }
163
164 /* If the count is not a multiple of 4, copy remaining samples here.
165 ** No loop unrolling is used. */
166 k = srcBLen % 0x4u;
167
168 while(k > 0u)
169 {
170 /* copy second buffer in reversal manner for remaining samples */
171 *pScr2-- = *px++;
172
173 /* Decrement the loop counter */
174 k--;
175 }
176
177 /* Initialze temporary scratch pointer */
178 pScr1 = pScratch1;
179
180 /* Assuming scratch1 buffer is aligned by 32-bit */
181 /* Fill (srcBLen - 1u) zeros in scratch buffer */
182 arm_fill_q15(0, pScr1, (srcBLen - 1u));
183
184 /* Update temporary scratch pointer */
185 pScr1 += (srcBLen - 1u);
186
187 /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
188
189 /* Copy (srcALen) samples in scratch buffer */
190 arm_copy_q15(pIn1, pScr1, srcALen);
191
192 /* Update pointers */
193 pScr1 += srcALen;
194
195 /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
196 arm_fill_q15(0, pScr1, (srcBLen - 1u));
197
198 /* Update pointer */
199 pScr1 += (srcBLen - 1u);
200
201 /* Initialization of pIn2 pointer */
202 pIn2 = py;
203
204 pScratch1 += firstIndex;
205
206 pOut = pDst + firstIndex;
207
208 /* First part of the processing with loop unrolling process 4 data points at a time.
209 ** a second loop below process for the remaining 1 to 3 samples. */
210
211 /* Actual convolution process starts here */
212 blkCnt = (numPoints) >> 2;
213
214 while(blkCnt > 0)
215 {
216 /* Initialze temporary scratch pointer as scratch1 */
217 pScr1 = pScratch1;
218
219 /* Clear Accumlators */
220 acc0 = 0;
221 acc1 = 0;
222 acc2 = 0;
223 acc3 = 0;
224
225 /* Read two samples from scratch1 buffer */
226 x1 = *__SIMD32(pScr1)++;
227
228 /* Read next two samples from scratch1 buffer */
229 x2 = *__SIMD32(pScr1)++;
230
231 tapCnt = (srcBLen) >> 2u;
232
233 while(tapCnt > 0u)
234 {
235
236 /* Read four samples from smaller buffer */
237 y1 = _SIMD32_OFFSET(pIn2);
238 y2 = _SIMD32_OFFSET(pIn2 + 2u);
239
240 /* multiply and accumlate */
241 acc0 = __SMLAD(x1, y1, acc0);
242 acc2 = __SMLAD(x2, y1, acc2);
243
244 /* pack input data */
245 #ifndef ARM_MATH_BIG_ENDIAN
246 x3 = __PKHBT(x2, x1, 0);
247 #else
248 x3 = __PKHBT(x1, x2, 0);
249 #endif
250
251 /* multiply and accumlate */
252 acc1 = __SMLADX(x3, y1, acc1);
253
254 /* Read next two samples from scratch1 buffer */
255 x1 = _SIMD32_OFFSET(pScr1);
256
257 /* multiply and accumlate */
258 acc0 = __SMLAD(x2, y2, acc0);
259
260 acc2 = __SMLAD(x1, y2, acc2);
261
262 /* pack input data */
263 #ifndef ARM_MATH_BIG_ENDIAN
264 x3 = __PKHBT(x1, x2, 0);
265 #else
266 x3 = __PKHBT(x2, x1, 0);
267 #endif
268
269 acc3 = __SMLADX(x3, y1, acc3);
270 acc1 = __SMLADX(x3, y2, acc1);
271
272 x2 = _SIMD32_OFFSET(pScr1 + 2u);
273
274 #ifndef ARM_MATH_BIG_ENDIAN
275 x3 = __PKHBT(x2, x1, 0);
276 #else
277 x3 = __PKHBT(x1, x2, 0);
278 #endif
279
280 acc3 = __SMLADX(x3, y2, acc3);
281
282 /* update scratch pointers */
283 pIn2 += 4u;
284 pScr1 += 4u;
285
286
287 /* Decrement the loop counter */
288 tapCnt--;
289 }
290
291 /* Update scratch pointer for remaining samples of smaller length sequence */
292 pScr1 -= 4u;
293
294 /* apply same above for remaining samples of smaller length sequence */
295 tapCnt = (srcBLen) & 3u;
296
297 while(tapCnt > 0u)
298 {
299
300 /* accumlate the results */
301 acc0 += (*pScr1++ * *pIn2);
302 acc1 += (*pScr1++ * *pIn2);
303 acc2 += (*pScr1++ * *pIn2);
304 acc3 += (*pScr1++ * *pIn2++);
305
306 pScr1 -= 3u;
307
308 /* Decrement the loop counter */
309 tapCnt--;
310 }
311
312 blkCnt--;
313
314
315 /* Store the results in the accumulators in the destination buffer. */
316
317 #ifndef ARM_MATH_BIG_ENDIAN
318
319 *__SIMD32(pOut)++ =
320 __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
321 *__SIMD32(pOut)++ =
322 __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
323
324 #else
325
326 *__SIMD32(pOut)++ =
327 __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
328 *__SIMD32(pOut)++ =
329 __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
330
331 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
332
333 /* Initialization of inputB pointer */
334 pIn2 = py;
335
336 pScratch1 += 4u;
337
338 }
339
340
341 blkCnt = numPoints & 0x3;
342
343 /* Calculate convolution for remaining samples of Bigger length sequence */
344 while(blkCnt > 0)
345 {
346 /* Initialze temporary scratch pointer as scratch1 */
347 pScr1 = pScratch1;
348
349 /* Clear Accumlators */
350 acc0 = 0;
351
352 tapCnt = (srcBLen) >> 1u;
353
354 while(tapCnt > 0u)
355 {
356
357 /* Read next two samples from scratch1 buffer */
358 x1 = *__SIMD32(pScr1)++;
359
360 /* Read two samples from smaller buffer */
361 y1 = *__SIMD32(pIn2)++;
362
363 acc0 = __SMLAD(x1, y1, acc0);
364
365 /* Decrement the loop counter */
366 tapCnt--;
367 }
368
369 tapCnt = (srcBLen) & 1u;
370
371 /* apply same above for remaining samples of smaller length sequence */
372 while(tapCnt > 0u)
373 {
374
375 /* accumlate the results */
376 acc0 += (*pScr1++ * *pIn2++);
377
378 /* Decrement the loop counter */
379 tapCnt--;
380 }
381
382 blkCnt--;
383
384 /* The result is in 2.30 format. Convert to 1.15 with saturation.
385 ** Then store the output in the destination buffer. */
386 *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
387
388 /* Initialization of inputB pointer */
389 pIn2 = py;
390
391 pScratch1 += 1u;
392
393 }
394 /* set status as ARM_MATH_SUCCESS */
395 status = ARM_MATH_SUCCESS;
396 }
397 /* Return to application */
398 return (status);
399 }
400
401 #else
402
403 arm_status arm_conv_partial_fast_opt_q15(
404 q15_t * pSrcA,
405 uint32_t srcALen,
406 q15_t * pSrcB,
407 uint32_t srcBLen,
408 q15_t * pDst,
409 uint32_t firstIndex,
410 uint32_t numPoints,
411 q15_t * pScratch1,
412 q15_t * pScratch2)
413 {
414
415 q15_t *pOut = pDst; /* output pointer */
416 q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */
417 q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */
418 q31_t acc0, acc1, acc2, acc3; /* Accumulator */
419 q15_t *pIn1; /* inputA pointer */
420 q15_t *pIn2; /* inputB pointer */
421 q15_t *px; /* Intermediate inputA pointer */
422 q15_t *py; /* Intermediate inputB pointer */
423 uint32_t j, k, blkCnt; /* loop counter */
424 arm_status status; /* Status variable */
425 uint32_t tapCnt; /* loop count */
426 q15_t x10, x11, x20, x21; /* Temporary variables to hold srcA buffer */
427 q15_t y10, y11; /* Temporary variables to hold srcB buffer */
428
429
430 /* Check for range of output samples to be calculated */
431 if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
432 {
433 /* Set status as ARM_MATH_ARGUMENT_ERROR */
434 status = ARM_MATH_ARGUMENT_ERROR;
435 }
436 else
437 {
438
439 /* The algorithm implementation is based on the lengths of the inputs. */
440 /* srcB is always made to slide across srcA. */
441 /* So srcBLen is always considered as shorter or equal to srcALen */
442 if(srcALen >= srcBLen)
443 {
444 /* Initialization of inputA pointer */
445 pIn1 = pSrcA;
446
447 /* Initialization of inputB pointer */
448 pIn2 = pSrcB;
449 }
450 else
451 {
452 /* Initialization of inputA pointer */
453 pIn1 = pSrcB;
454
455 /* Initialization of inputB pointer */
456 pIn2 = pSrcA;
457
458 /* srcBLen is always considered as shorter or equal to srcALen */
459 j = srcBLen;
460 srcBLen = srcALen;
461 srcALen = j;
462 }
463
464 /* Temporary pointer for scratch2 */
465 py = pScratch2;
466
467 /* pointer to take end of scratch2 buffer */
468 pScr2 = pScratch2 + srcBLen - 1;
469
470 /* points to smaller length sequence */
471 px = pIn2;
472
473 /* Apply loop unrolling and do 4 Copies simultaneously. */
474 k = srcBLen >> 2u;
475
476 /* First part of the processing with loop unrolling copies 4 data points at a time.
477 ** a second loop below copies for the remaining 1 to 3 samples. */
478 while(k > 0u)
479 {
480 /* copy second buffer in reversal manner */
481 *pScr2-- = *px++;
482 *pScr2-- = *px++;
483 *pScr2-- = *px++;
484 *pScr2-- = *px++;
485
486 /* Decrement the loop counter */
487 k--;
488 }
489
490 /* If the count is not a multiple of 4, copy remaining samples here.
491 ** No loop unrolling is used. */
492 k = srcBLen % 0x4u;
493
494 while(k > 0u)
495 {
496 /* copy second buffer in reversal manner for remaining samples */
497 *pScr2-- = *px++;
498
499 /* Decrement the loop counter */
500 k--;
501 }
502
503 /* Initialze temporary scratch pointer */
504 pScr1 = pScratch1;
505
506 /* Fill (srcBLen - 1u) zeros in scratch buffer */
507 arm_fill_q15(0, pScr1, (srcBLen - 1u));
508
509 /* Update temporary scratch pointer */
510 pScr1 += (srcBLen - 1u);
511
512 /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
513
514
515 /* Apply loop unrolling and do 4 Copies simultaneously. */
516 k = srcALen >> 2u;
517
518 /* First part of the processing with loop unrolling copies 4 data points at a time.
519 ** a second loop below copies for the remaining 1 to 3 samples. */
520 while(k > 0u)
521 {
522 /* copy second buffer in reversal manner */
523 *pScr1++ = *pIn1++;
524 *pScr1++ = *pIn1++;
525 *pScr1++ = *pIn1++;
526 *pScr1++ = *pIn1++;
527
528 /* Decrement the loop counter */
529 k--;
530 }
531
532 /* If the count is not a multiple of 4, copy remaining samples here.
533 ** No loop unrolling is used. */
534 k = srcALen % 0x4u;
535
536 while(k > 0u)
537 {
538 /* copy second buffer in reversal manner for remaining samples */
539 *pScr1++ = *pIn1++;
540
541 /* Decrement the loop counter */
542 k--;
543 }
544
545
546 /* Apply loop unrolling and do 4 Copies simultaneously. */
547 k = (srcBLen - 1u) >> 2u;
548
549 /* First part of the processing with loop unrolling copies 4 data points at a time.
550 ** a second loop below copies for the remaining 1 to 3 samples. */
551 while(k > 0u)
552 {
553 /* copy second buffer in reversal manner */
554 *pScr1++ = 0;
555 *pScr1++ = 0;
556 *pScr1++ = 0;
557 *pScr1++ = 0;
558
559 /* Decrement the loop counter */
560 k--;
561 }
562
563 /* If the count is not a multiple of 4, copy remaining samples here.
564 ** No loop unrolling is used. */
565 k = (srcBLen - 1u) % 0x4u;
566
567 while(k > 0u)
568 {
569 /* copy second buffer in reversal manner for remaining samples */
570 *pScr1++ = 0;
571
572 /* Decrement the loop counter */
573 k--;
574 }
575
576
577 /* Initialization of pIn2 pointer */
578 pIn2 = py;
579
580 pScratch1 += firstIndex;
581
582 pOut = pDst + firstIndex;
583
584 /* Actual convolution process starts here */
585 blkCnt = (numPoints) >> 2;
586
587 while(blkCnt > 0)
588 {
589 /* Initialze temporary scratch pointer as scratch1 */
590 pScr1 = pScratch1;
591
592 /* Clear Accumlators */
593 acc0 = 0;
594 acc1 = 0;
595 acc2 = 0;
596 acc3 = 0;
597
598 /* Read two samples from scratch1 buffer */
599 x10 = *pScr1++;
600 x11 = *pScr1++;
601
602 /* Read next two samples from scratch1 buffer */
603 x20 = *pScr1++;
604 x21 = *pScr1++;
605
606 tapCnt = (srcBLen) >> 2u;
607
608 while(tapCnt > 0u)
609 {
610
611 /* Read two samples from smaller buffer */
612 y10 = *pIn2;
613 y11 = *(pIn2 + 1u);
614
615 /* multiply and accumlate */
616 acc0 += (q31_t) x10 *y10;
617 acc0 += (q31_t) x11 *y11;
618 acc2 += (q31_t) x20 *y10;
619 acc2 += (q31_t) x21 *y11;
620
621 /* multiply and accumlate */
622 acc1 += (q31_t) x11 *y10;
623 acc1 += (q31_t) x20 *y11;
624
625 /* Read next two samples from scratch1 buffer */
626 x10 = *pScr1;
627 x11 = *(pScr1 + 1u);
628
629 /* multiply and accumlate */
630 acc3 += (q31_t) x21 *y10;
631 acc3 += (q31_t) x10 *y11;
632
633 /* Read next two samples from scratch2 buffer */
634 y10 = *(pIn2 + 2u);
635 y11 = *(pIn2 + 3u);
636
637 /* multiply and accumlate */
638 acc0 += (q31_t) x20 *y10;
639 acc0 += (q31_t) x21 *y11;
640 acc2 += (q31_t) x10 *y10;
641 acc2 += (q31_t) x11 *y11;
642 acc1 += (q31_t) x21 *y10;
643 acc1 += (q31_t) x10 *y11;
644
645 /* Read next two samples from scratch1 buffer */
646 x20 = *(pScr1 + 2);
647 x21 = *(pScr1 + 3);
648
649 /* multiply and accumlate */
650 acc3 += (q31_t) x11 *y10;
651 acc3 += (q31_t) x20 *y11;
652
653 /* update scratch pointers */
654 pIn2 += 4u;
655 pScr1 += 4u;
656
657 /* Decrement the loop counter */
658 tapCnt--;
659 }
660
661 /* Update scratch pointer for remaining samples of smaller length sequence */
662 pScr1 -= 4u;
663
664 /* apply same above for remaining samples of smaller length sequence */
665 tapCnt = (srcBLen) & 3u;
666
667 while(tapCnt > 0u)
668 {
669 /* accumlate the results */
670 acc0 += (*pScr1++ * *pIn2);
671 acc1 += (*pScr1++ * *pIn2);
672 acc2 += (*pScr1++ * *pIn2);
673 acc3 += (*pScr1++ * *pIn2++);
674
675 pScr1 -= 3u;
676
677 /* Decrement the loop counter */
678 tapCnt--;
679 }
680
681 blkCnt--;
682
683
684 /* Store the results in the accumulators in the destination buffer. */
685 *pOut++ = __SSAT((acc0 >> 15), 16);
686 *pOut++ = __SSAT((acc1 >> 15), 16);
687 *pOut++ = __SSAT((acc2 >> 15), 16);
688 *pOut++ = __SSAT((acc3 >> 15), 16);
689
690 /* Initialization of inputB pointer */
691 pIn2 = py;
692
693 pScratch1 += 4u;
694
695 }
696
697
698 blkCnt = numPoints & 0x3;
699
700 /* Calculate convolution for remaining samples of Bigger length sequence */
701 while(blkCnt > 0)
702 {
703 /* Initialze temporary scratch pointer as scratch1 */
704 pScr1 = pScratch1;
705
706 /* Clear Accumlators */
707 acc0 = 0;
708
709 tapCnt = (srcBLen) >> 1u;
710
711 while(tapCnt > 0u)
712 {
713
714 /* Read next two samples from scratch1 buffer */
715 x10 = *pScr1++;
716 x11 = *pScr1++;
717
718 /* Read two samples from smaller buffer */
719 y10 = *pIn2++;
720 y11 = *pIn2++;
721
722 /* multiply and accumlate */
723 acc0 += (q31_t) x10 *y10;
724 acc0 += (q31_t) x11 *y11;
725
726 /* Decrement the loop counter */
727 tapCnt--;
728 }
729
730 tapCnt = (srcBLen) & 1u;
731
732 /* apply same above for remaining samples of smaller length sequence */
733 while(tapCnt > 0u)
734 {
735
736 /* accumlate the results */
737 acc0 += (*pScr1++ * *pIn2++);
738
739 /* Decrement the loop counter */
740 tapCnt--;
741 }
742
743 blkCnt--;
744
745 /* Store the result in the accumulator in the destination buffer. */
746 *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
747
748 /* Initialization of inputB pointer */
749 pIn2 = py;
750
751 pScratch1 += 1u;
752
753 }
754
755 /* set status as ARM_MATH_SUCCESS */
756 status = ARM_MATH_SUCCESS;
757
758 }
759
760 /* Return to application */
761 return (status);
762 }
763
764 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
765
766 /**
767 * @} end of PartialConv group
768 */
Imprint / Impressum