]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_correlate_opt_q7.c
remove experimental return, cleanup slash_question key
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_correlate_opt_q7.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_correlate_opt_q7.c
9 *
10 * Description: Correlation of Q7 sequences.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup Corr
49 * @{
50 */
51
52 /**
53 * @brief Correlation of Q7 sequences.
54 * @param[in] *pSrcA points to the first input sequence.
55 * @param[in] srcALen length of the first input sequence.
56 * @param[in] *pSrcB points to the second input sequence.
57 * @param[in] srcBLen length of the second input sequence.
58 * @param[out] *pDst points to the location where the output result is written. Length 2 * max(srcALen, srcBLen) - 1.
59 * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
60 * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
61 * @return none.
62 *
63 *
64 * \par Restrictions
65 * If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
66 * In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit
67 *
68 * @details
69 * <b>Scaling and Overflow Behavior:</b>
70 *
71 * \par
72 * The function is implemented using a 32-bit internal accumulator.
73 * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
74 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
75 * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
76 * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and saturated to 1.7 format.
77 *
78 *
79 */
80
81
82
83 void arm_correlate_opt_q7(
84 q7_t * pSrcA,
85 uint32_t srcALen,
86 q7_t * pSrcB,
87 uint32_t srcBLen,
88 q7_t * pDst,
89 q15_t * pScratch1,
90 q15_t * pScratch2)
91 {
92 q7_t *pOut = pDst; /* output pointer */
93 q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch */
94 q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch */
95 q7_t *pIn1; /* inputA pointer */
96 q7_t *pIn2; /* inputB pointer */
97 q15_t *py; /* Intermediate inputB pointer */
98 q31_t acc0, acc1, acc2, acc3; /* Accumulators */
99 uint32_t j, k = 0u, blkCnt; /* loop counter */
100 int32_t inc = 1; /* output pointer increment */
101 uint32_t outBlockSize; /* loop counter */
102 q15_t x4; /* Temporary input variable */
103 uint32_t tapCnt; /* loop counter */
104 q31_t x1, x2, x3, y1; /* Temporary input variables */
105
106 /* The algorithm implementation is based on the lengths of the inputs. */
107 /* srcB is always made to slide across srcA. */
108 /* So srcBLen is always considered as shorter or equal to srcALen */
109 /* But CORR(x, y) is reverse of CORR(y, x) */
110 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
111 /* and the destination pointer modifier, inc is set to -1 */
112 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
113 /* But to improve the performance,
114 * we include zeroes in the output instead of zero padding either of the the inputs*/
115 /* If srcALen > srcBLen,
116 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
117 /* If srcALen < srcBLen,
118 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
119 if(srcALen >= srcBLen)
120 {
121 /* Initialization of inputA pointer */
122 pIn1 = (pSrcA);
123
124 /* Initialization of inputB pointer */
125 pIn2 = (pSrcB);
126
127 /* Number of output samples is calculated */
128 outBlockSize = (2u * srcALen) - 1u;
129
130 /* When srcALen > srcBLen, zero padding is done to srcB
131 * to make their lengths equal.
132 * Instead, (outBlockSize - (srcALen + srcBLen - 1))
133 * number of output samples are made zero */
134 j = outBlockSize - (srcALen + (srcBLen - 1u));
135
136 /* Updating the pointer position to non zero value */
137 pOut += j;
138
139 }
140 else
141 {
142 /* Initialization of inputA pointer */
143 pIn1 = (pSrcB);
144
145 /* Initialization of inputB pointer */
146 pIn2 = (pSrcA);
147
148 /* srcBLen is always considered as shorter or equal to srcALen */
149 j = srcBLen;
150 srcBLen = srcALen;
151 srcALen = j;
152
153 /* CORR(x, y) = Reverse order(CORR(y, x)) */
154 /* Hence set the destination pointer to point to the last output sample */
155 pOut = pDst + ((srcALen + srcBLen) - 2u);
156
157 /* Destination address modifier is set to -1 */
158 inc = -1;
159
160 }
161
162
163 /* Copy (srcBLen) samples in scratch buffer */
164 k = srcBLen >> 2u;
165
166 /* First part of the processing with loop unrolling copies 4 data points at a time.
167 ** a second loop below copies for the remaining 1 to 3 samples. */
168 while(k > 0u)
169 {
170 /* copy second buffer in reversal manner */
171 x4 = (q15_t) * pIn2++;
172 *pScr2++ = x4;
173 x4 = (q15_t) * pIn2++;
174 *pScr2++ = x4;
175 x4 = (q15_t) * pIn2++;
176 *pScr2++ = x4;
177 x4 = (q15_t) * pIn2++;
178 *pScr2++ = x4;
179
180 /* Decrement the loop counter */
181 k--;
182 }
183
184 /* If the count is not a multiple of 4, copy remaining samples here.
185 ** No loop unrolling is used. */
186 k = srcBLen % 0x4u;
187
188 while(k > 0u)
189 {
190 /* copy second buffer in reversal manner for remaining samples */
191 x4 = (q15_t) * pIn2++;
192 *pScr2++ = x4;
193
194 /* Decrement the loop counter */
195 k--;
196 }
197
198 /* Fill (srcBLen - 1u) zeros in scratch buffer */
199 arm_fill_q15(0, pScr1, (srcBLen - 1u));
200
201 /* Update temporary scratch pointer */
202 pScr1 += (srcBLen - 1u);
203
204 /* Copy (srcALen) samples in scratch buffer */
205 k = srcALen >> 2u;
206
207 /* First part of the processing with loop unrolling copies 4 data points at a time.
208 ** a second loop below copies for the remaining 1 to 3 samples. */
209 while(k > 0u)
210 {
211 /* copy second buffer in reversal manner */
212 x4 = (q15_t) * pIn1++;
213 *pScr1++ = x4;
214 x4 = (q15_t) * pIn1++;
215 *pScr1++ = x4;
216 x4 = (q15_t) * pIn1++;
217 *pScr1++ = x4;
218 x4 = (q15_t) * pIn1++;
219 *pScr1++ = x4;
220
221 /* Decrement the loop counter */
222 k--;
223 }
224
225 /* If the count is not a multiple of 4, copy remaining samples here.
226 ** No loop unrolling is used. */
227 k = srcALen % 0x4u;
228
229 while(k > 0u)
230 {
231 /* copy second buffer in reversal manner for remaining samples */
232 x4 = (q15_t) * pIn1++;
233 *pScr1++ = x4;
234
235 /* Decrement the loop counter */
236 k--;
237 }
238
239 #ifndef UNALIGNED_SUPPORT_DISABLE
240
241 /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
242 arm_fill_q15(0, pScr1, (srcBLen - 1u));
243
244 /* Update pointer */
245 pScr1 += (srcBLen - 1u);
246
247 #else
248
249 /* Apply loop unrolling and do 4 Copies simultaneously. */
250 k = (srcBLen - 1u) >> 2u;
251
252 /* First part of the processing with loop unrolling copies 4 data points at a time.
253 ** a second loop below copies for the remaining 1 to 3 samples. */
254 while(k > 0u)
255 {
256 /* copy second buffer in reversal manner */
257 *pScr1++ = 0;
258 *pScr1++ = 0;
259 *pScr1++ = 0;
260 *pScr1++ = 0;
261
262 /* Decrement the loop counter */
263 k--;
264 }
265
266 /* If the count is not a multiple of 4, copy remaining samples here.
267 ** No loop unrolling is used. */
268 k = (srcBLen - 1u) % 0x4u;
269
270 while(k > 0u)
271 {
272 /* copy second buffer in reversal manner for remaining samples */
273 *pScr1++ = 0;
274
275 /* Decrement the loop counter */
276 k--;
277 }
278
279 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
280
281 /* Temporary pointer for second sequence */
282 py = pScratch2;
283
284 /* Initialization of pScr2 pointer */
285 pScr2 = pScratch2;
286
287 /* Actual correlation process starts here */
288 blkCnt = (srcALen + srcBLen - 1u) >> 2;
289
290 while(blkCnt > 0)
291 {
292 /* Initialze temporary scratch pointer as scratch1 */
293 pScr1 = pScratch1;
294
295 /* Clear Accumlators */
296 acc0 = 0;
297 acc1 = 0;
298 acc2 = 0;
299 acc3 = 0;
300
301 /* Read two samples from scratch1 buffer */
302 x1 = *__SIMD32(pScr1)++;
303
304 /* Read next two samples from scratch1 buffer */
305 x2 = *__SIMD32(pScr1)++;
306
307 tapCnt = (srcBLen) >> 2u;
308
309 while(tapCnt > 0u)
310 {
311
312 /* Read four samples from smaller buffer */
313 y1 = _SIMD32_OFFSET(pScr2);
314
315 /* multiply and accumlate */
316 acc0 = __SMLAD(x1, y1, acc0);
317 acc2 = __SMLAD(x2, y1, acc2);
318
319 /* pack input data */
320 #ifndef ARM_MATH_BIG_ENDIAN
321 x3 = __PKHBT(x2, x1, 0);
322 #else
323 x3 = __PKHBT(x1, x2, 0);
324 #endif
325
326 /* multiply and accumlate */
327 acc1 = __SMLADX(x3, y1, acc1);
328
329 /* Read next two samples from scratch1 buffer */
330 x1 = *__SIMD32(pScr1)++;
331
332 /* pack input data */
333 #ifndef ARM_MATH_BIG_ENDIAN
334 x3 = __PKHBT(x1, x2, 0);
335 #else
336 x3 = __PKHBT(x2, x1, 0);
337 #endif
338
339 acc3 = __SMLADX(x3, y1, acc3);
340
341 /* Read four samples from smaller buffer */
342 y1 = _SIMD32_OFFSET(pScr2 + 2u);
343
344 acc0 = __SMLAD(x2, y1, acc0);
345
346 acc2 = __SMLAD(x1, y1, acc2);
347
348 acc1 = __SMLADX(x3, y1, acc1);
349
350 x2 = *__SIMD32(pScr1)++;
351
352 #ifndef ARM_MATH_BIG_ENDIAN
353 x3 = __PKHBT(x2, x1, 0);
354 #else
355 x3 = __PKHBT(x1, x2, 0);
356 #endif
357
358 acc3 = __SMLADX(x3, y1, acc3);
359
360 pScr2 += 4u;
361
362
363 /* Decrement the loop counter */
364 tapCnt--;
365 }
366
367
368
369 /* Update scratch pointer for remaining samples of smaller length sequence */
370 pScr1 -= 4u;
371
372
373 /* apply same above for remaining samples of smaller length sequence */
374 tapCnt = (srcBLen) & 3u;
375
376 while(tapCnt > 0u)
377 {
378
379 /* accumlate the results */
380 acc0 += (*pScr1++ * *pScr2);
381 acc1 += (*pScr1++ * *pScr2);
382 acc2 += (*pScr1++ * *pScr2);
383 acc3 += (*pScr1++ * *pScr2++);
384
385 pScr1 -= 3u;
386
387 /* Decrement the loop counter */
388 tapCnt--;
389 }
390
391 blkCnt--;
392
393 /* Store the result in the accumulator in the destination buffer. */
394 *pOut = (q7_t) (__SSAT(acc0 >> 7u, 8));
395 pOut += inc;
396 *pOut = (q7_t) (__SSAT(acc1 >> 7u, 8));
397 pOut += inc;
398 *pOut = (q7_t) (__SSAT(acc2 >> 7u, 8));
399 pOut += inc;
400 *pOut = (q7_t) (__SSAT(acc3 >> 7u, 8));
401 pOut += inc;
402
403 /* Initialization of inputB pointer */
404 pScr2 = py;
405
406 pScratch1 += 4u;
407
408 }
409
410
411 blkCnt = (srcALen + srcBLen - 1u) & 0x3;
412
413 /* Calculate correlation for remaining samples of Bigger length sequence */
414 while(blkCnt > 0)
415 {
416 /* Initialze temporary scratch pointer as scratch1 */
417 pScr1 = pScratch1;
418
419 /* Clear Accumlators */
420 acc0 = 0;
421
422 tapCnt = (srcBLen) >> 1u;
423
424 while(tapCnt > 0u)
425 {
426 acc0 += (*pScr1++ * *pScr2++);
427 acc0 += (*pScr1++ * *pScr2++);
428
429 /* Decrement the loop counter */
430 tapCnt--;
431 }
432
433 tapCnt = (srcBLen) & 1u;
434
435 /* apply same above for remaining samples of smaller length sequence */
436 while(tapCnt > 0u)
437 {
438
439 /* accumlate the results */
440 acc0 += (*pScr1++ * *pScr2++);
441
442 /* Decrement the loop counter */
443 tapCnt--;
444 }
445
446 blkCnt--;
447
448 /* Store the result in the accumulator in the destination buffer. */
449 *pOut = (q7_t) (__SSAT(acc0 >> 7u, 8));
450
451 pOut += inc;
452
453 /* Initialization of inputB pointer */
454 pScr2 = py;
455
456 pScratch1 += 1u;
457
458 }
459
460 }
461
462 /**
463 * @} end of Corr group
464 */
Imprint / Impressum