]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_lms_f32.c
remove experimental return, cleanup slash_question key
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_lms_f32.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_lms_f32.c
9 *
10 * Description: Processing function for the floating-point LMS filter.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @defgroup LMS Least Mean Square (LMS) Filters
49 *
50 * LMS filters are a class of adaptive filters that are able to "learn" an unknown transfer functions.
51 * LMS filters use a gradient descent method in which the filter coefficients are updated based on the instantaneous error signal.
52 * Adaptive filters are often used in communication systems, equalizers, and noise removal.
53 * The CMSIS DSP Library contains LMS filter functions that operate on Q15, Q31, and floating-point data types.
54 * The library also contains normalized LMS filters in which the filter coefficient adaptation is indepedent of the level of the input signal.
55 *
56 * An LMS filter consists of two components as shown below.
57 * The first component is a standard transversal or FIR filter.
58 * The second component is a coefficient update mechanism.
59 * The LMS filter has two input signals.
60 * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter.
61 * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input.
62 * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input.
63 * This "error signal" tends towards zero as the filter adapts.
64 * The LMS processing functions accept the input and reference input signals and generate the filter output and error signal.
65 * \image html LMS.gif "Internal structure of the Least Mean Square filter"
66 *
67 * The functions operate on blocks of data and each call to the function processes
68 * <code>blockSize</code> samples through the filter.
69 * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal,
70 * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal.
71 * All arrays contain <code>blockSize</code> values.
72 *
73 * The functions operate on a block-by-block basis.
74 * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis.
75 * The convergence of the LMS filter is slower compared to the normalized LMS algorithm.
76 *
77 * \par Algorithm:
78 * The output signal <code>y[n]</code> is computed by a standard FIR filter:
79 * <pre>
80 * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
81 * </pre>
82 *
83 * \par
84 * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output:
85 * <pre>
86 * e[n] = d[n] - y[n].
87 * </pre>
88 *
89 * \par
90 * After each sample of the error signal is computed, the filter coefficients <code>b[k]</code> are updated on a sample-by-sample basis:
91 * <pre>
92 * b[k] = b[k] + e[n] * mu * x[n-k], for k=0, 1, ..., numTaps-1
93 * </pre>
94 * where <code>mu</code> is the step size and controls the rate of coefficient convergence.
95 *\par
96 * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
97 * Coefficients are stored in time reversed order.
98 * \par
99 * <pre>
100 * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
101 * </pre>
102 * \par
103 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
104 * Samples in the state buffer are stored in the order:
105 * \par
106 * <pre>
107 * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
108 * </pre>
109 * \par
110 * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples.
111 * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters,
112 * to be avoided and yields a significant speed improvement.
113 * The state variables are updated after each block of data is processed.
114 * \par Instance Structure
115 * The coefficients and state variables for a filter are stored together in an instance data structure.
116 * A separate instance structure must be defined for each filter and
117 * coefficient and state arrays cannot be shared among instances.
118 * There are separate instance structure declarations for each of the 3 supported data types.
119 *
120 * \par Initialization Functions
121 * There is also an associated initialization function for each data type.
122 * The initialization function performs the following operations:
123 * - Sets the values of the internal structure fields.
124 * - Zeros out the values in the state buffer.
125 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
126 * numTaps, pCoeffs, mu, postShift (not for f32), pState. Also set all of the values in pState to zero.
127 *
128 * \par
129 * Use of the initialization function is optional.
130 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
131 * To place an instance structure into a const data section, the instance structure must be manually initialized.
132 * Set the values in the state buffer to zeros before static initialization.
133 * The code below statically initializes each of the 3 different data type filter instance structures
134 * <pre>
135 * arm_lms_instance_f32 S = {numTaps, pState, pCoeffs, mu};
136 * arm_lms_instance_q31 S = {numTaps, pState, pCoeffs, mu, postShift};
137 * arm_lms_instance_q15 S = {numTaps, pState, pCoeffs, mu, postShift};
138 * </pre>
139 * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
140 * <code>pCoeffs</code> is the address of the coefficient buffer; <code>mu</code> is the step size parameter; and <code>postShift</code> is the shift applied to coefficients.
141 *
142 * \par Fixed-Point Behavior:
143 * Care must be taken when using the Q15 and Q31 versions of the LMS filter.
144 * The following issues must be considered:
145 * - Scaling of coefficients
146 * - Overflow and saturation
147 *
148 * \par Scaling of Coefficients:
149 * Filter coefficients are represented as fractional values and
150 * coefficients are restricted to lie in the range <code>[-1 +1)</code>.
151 * The fixed-point functions have an additional scaling parameter <code>postShift</code>.
152 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
153 * This essentially scales the filter coefficients by <code>2^postShift</code> and
154 * allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
155 * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled.
156 *
157 * \par Overflow and Saturation:
158 * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are
159 * described separately as part of the function specific documentation below.
160 */
161
162 /**
163 * @addtogroup LMS
164 * @{
165 */
166
167 /**
168 * @details
169 * This function operates on floating-point data types.
170 *
171 * @brief Processing function for floating-point LMS filter.
172 * @param[in] *S points to an instance of the floating-point LMS filter structure.
173 * @param[in] *pSrc points to the block of input data.
174 * @param[in] *pRef points to the block of reference data.
175 * @param[out] *pOut points to the block of output data.
176 * @param[out] *pErr points to the block of error data.
177 * @param[in] blockSize number of samples to process.
178 * @return none.
179 */
180
181 void arm_lms_f32(
182 const arm_lms_instance_f32 * S,
183 float32_t * pSrc,
184 float32_t * pRef,
185 float32_t * pOut,
186 float32_t * pErr,
187 uint32_t blockSize)
188 {
189 float32_t *pState = S->pState; /* State pointer */
190 float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
191 float32_t *pStateCurnt; /* Points to the current sample of the state */
192 float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
193 float32_t mu = S->mu; /* Adaptive factor */
194 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
195 uint32_t tapCnt, blkCnt; /* Loop counters */
196 float32_t sum, e, d; /* accumulator, error, reference data sample */
197 float32_t w = 0.0f; /* weight factor */
198
199 e = 0.0f;
200 d = 0.0f;
201
202 /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
203 /* pStateCurnt points to the location where the new input data should be written */
204 pStateCurnt = &(S->pState[(numTaps - 1u)]);
205
206 blkCnt = blockSize;
207
208
209 #ifndef ARM_MATH_CM0_FAMILY
210
211 /* Run the below code for Cortex-M4 and Cortex-M3 */
212
213 while(blkCnt > 0u)
214 {
215 /* Copy the new input sample into the state buffer */
216 *pStateCurnt++ = *pSrc++;
217
218 /* Initialize pState pointer */
219 px = pState;
220
221 /* Initialize coeff pointer */
222 pb = (pCoeffs);
223
224 /* Set the accumulator to zero */
225 sum = 0.0f;
226
227 /* Loop unrolling. Process 4 taps at a time. */
228 tapCnt = numTaps >> 2;
229
230 while(tapCnt > 0u)
231 {
232 /* Perform the multiply-accumulate */
233 sum += (*px++) * (*pb++);
234 sum += (*px++) * (*pb++);
235 sum += (*px++) * (*pb++);
236 sum += (*px++) * (*pb++);
237
238 /* Decrement the loop counter */
239 tapCnt--;
240 }
241
242 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
243 tapCnt = numTaps % 0x4u;
244
245 while(tapCnt > 0u)
246 {
247 /* Perform the multiply-accumulate */
248 sum += (*px++) * (*pb++);
249
250 /* Decrement the loop counter */
251 tapCnt--;
252 }
253
254 /* The result in the accumulator, store in the destination buffer. */
255 *pOut++ = sum;
256
257 /* Compute and store error */
258 d = (float32_t) (*pRef++);
259 e = d - sum;
260 *pErr++ = e;
261
262 /* Calculation of Weighting factor for the updating filter coefficients */
263 w = e * mu;
264
265 /* Initialize pState pointer */
266 px = pState;
267
268 /* Initialize coeff pointer */
269 pb = (pCoeffs);
270
271 /* Loop unrolling. Process 4 taps at a time. */
272 tapCnt = numTaps >> 2;
273
274 /* Update filter coefficients */
275 while(tapCnt > 0u)
276 {
277 /* Perform the multiply-accumulate */
278 *pb = *pb + (w * (*px++));
279 pb++;
280
281 *pb = *pb + (w * (*px++));
282 pb++;
283
284 *pb = *pb + (w * (*px++));
285 pb++;
286
287 *pb = *pb + (w * (*px++));
288 pb++;
289
290 /* Decrement the loop counter */
291 tapCnt--;
292 }
293
294 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
295 tapCnt = numTaps % 0x4u;
296
297 while(tapCnt > 0u)
298 {
299 /* Perform the multiply-accumulate */
300 *pb = *pb + (w * (*px++));
301 pb++;
302
303 /* Decrement the loop counter */
304 tapCnt--;
305 }
306
307 /* Advance state pointer by 1 for the next sample */
308 pState = pState + 1;
309
310 /* Decrement the loop counter */
311 blkCnt--;
312 }
313
314
315 /* Processing is complete. Now copy the last numTaps - 1 samples to the
316 satrt of the state buffer. This prepares the state buffer for the
317 next function call. */
318
319 /* Points to the start of the pState buffer */
320 pStateCurnt = S->pState;
321
322 /* Loop unrolling for (numTaps - 1u) samples copy */
323 tapCnt = (numTaps - 1u) >> 2u;
324
325 /* copy data */
326 while(tapCnt > 0u)
327 {
328 *pStateCurnt++ = *pState++;
329 *pStateCurnt++ = *pState++;
330 *pStateCurnt++ = *pState++;
331 *pStateCurnt++ = *pState++;
332
333 /* Decrement the loop counter */
334 tapCnt--;
335 }
336
337 /* Calculate remaining number of copies */
338 tapCnt = (numTaps - 1u) % 0x4u;
339
340 /* Copy the remaining q31_t data */
341 while(tapCnt > 0u)
342 {
343 *pStateCurnt++ = *pState++;
344
345 /* Decrement the loop counter */
346 tapCnt--;
347 }
348
349 #else
350
351 /* Run the below code for Cortex-M0 */
352
353 while(blkCnt > 0u)
354 {
355 /* Copy the new input sample into the state buffer */
356 *pStateCurnt++ = *pSrc++;
357
358 /* Initialize pState pointer */
359 px = pState;
360
361 /* Initialize pCoeffs pointer */
362 pb = pCoeffs;
363
364 /* Set the accumulator to zero */
365 sum = 0.0f;
366
367 /* Loop over numTaps number of values */
368 tapCnt = numTaps;
369
370 while(tapCnt > 0u)
371 {
372 /* Perform the multiply-accumulate */
373 sum += (*px++) * (*pb++);
374
375 /* Decrement the loop counter */
376 tapCnt--;
377 }
378
379 /* The result is stored in the destination buffer. */
380 *pOut++ = sum;
381
382 /* Compute and store error */
383 d = (float32_t) (*pRef++);
384 e = d - sum;
385 *pErr++ = e;
386
387 /* Weighting factor for the LMS version */
388 w = e * mu;
389
390 /* Initialize pState pointer */
391 px = pState;
392
393 /* Initialize pCoeffs pointer */
394 pb = pCoeffs;
395
396 /* Loop over numTaps number of values */
397 tapCnt = numTaps;
398
399 while(tapCnt > 0u)
400 {
401 /* Perform the multiply-accumulate */
402 *pb = *pb + (w * (*px++));
403 pb++;
404
405 /* Decrement the loop counter */
406 tapCnt--;
407 }
408
409 /* Advance state pointer by 1 for the next sample */
410 pState = pState + 1;
411
412 /* Decrement the loop counter */
413 blkCnt--;
414 }
415
416
417 /* Processing is complete. Now copy the last numTaps - 1 samples to the
418 * start of the state buffer. This prepares the state buffer for the
419 * next function call. */
420
421 /* Points to the start of the pState buffer */
422 pStateCurnt = S->pState;
423
424 /* Copy (numTaps - 1u) samples */
425 tapCnt = (numTaps - 1u);
426
427 /* Copy the data */
428 while(tapCnt > 0u)
429 {
430 *pStateCurnt++ = *pState++;
431
432 /* Decrement the loop counter */
433 tapCnt--;
434 }
435
436 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
437
438 }
439
440 /**
441 * @} end of LMS group
442 */
Imprint / Impressum