]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_lms_norm_f32.c
remove experimental return, cleanup slash_question key
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_lms_norm_f32.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_lms_norm_f32.c
9 *
10 * Description: Processing function for the floating-point Normalised LMS.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @defgroup LMS_NORM Normalized LMS Filters
49 *
50 * This set of functions implements a commonly used adaptive filter.
51 * It is related to the Least Mean Square (LMS) adaptive filter and includes an additional normalization
52 * factor which increases the adaptation rate of the filter.
53 * The CMSIS DSP Library contains normalized LMS filter functions that operate on Q15, Q31, and floating-point data types.
54 *
55 * A normalized least mean square (NLMS) filter consists of two components as shown below.
56 * The first component is a standard transversal or FIR filter.
57 * The second component is a coefficient update mechanism.
58 * The NLMS filter has two input signals.
59 * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter.
60 * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input.
61 * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input.
62 * This "error signal" tends towards zero as the filter adapts.
63 * The NLMS processing functions accept the input and reference input signals and generate the filter output and error signal.
64 * \image html LMS.gif "Internal structure of the NLMS adaptive filter"
65 *
66 * The functions operate on blocks of data and each call to the function processes
67 * <code>blockSize</code> samples through the filter.
68 * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal,
69 * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal.
70 * All arrays contain <code>blockSize</code> values.
71 *
72 * The functions operate on a block-by-block basis.
73 * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis.
74 * The convergence of the LMS filter is slower compared to the normalized LMS algorithm.
75 *
76 * \par Algorithm:
77 * The output signal <code>y[n]</code> is computed by a standard FIR filter:
78 * <pre>
79 * y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
80 * </pre>
81 *
82 * \par
83 * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output:
84 * <pre>
85 * e[n] = d[n] - y[n].
86 * </pre>
87 *
88 * \par
89 * After each sample of the error signal is computed the instanteous energy of the filter state variables is calculated:
90 * <pre>
91 * E = x[n]^2 + x[n-1]^2 + ... + x[n-numTaps+1]^2.
92 * </pre>
93 * The filter coefficients <code>b[k]</code> are then updated on a sample-by-sample basis:
94 * <pre>
95 * b[k] = b[k] + e[n] * (mu/E) * x[n-k], for k=0, 1, ..., numTaps-1
96 * </pre>
97 * where <code>mu</code> is the step size and controls the rate of coefficient convergence.
98 *\par
99 * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
100 * Coefficients are stored in time reversed order.
101 * \par
102 * <pre>
103 * {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
104 * </pre>
105 * \par
106 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
107 * Samples in the state buffer are stored in the order:
108 * \par
109 * <pre>
110 * {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
111 * </pre>
112 * \par
113 * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples.
114 * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters,
115 * to be avoided and yields a significant speed improvement.
116 * The state variables are updated after each block of data is processed.
117 * \par Instance Structure
118 * The coefficients and state variables for a filter are stored together in an instance data structure.
119 * A separate instance structure must be defined for each filter and
120 * coefficient and state arrays cannot be shared among instances.
121 * There are separate instance structure declarations for each of the 3 supported data types.
122 *
123 * \par Initialization Functions
124 * There is also an associated initialization function for each data type.
125 * The initialization function performs the following operations:
126 * - Sets the values of the internal structure fields.
127 * - Zeros out the values in the state buffer.
128 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
129 * numTaps, pCoeffs, mu, energy, x0, pState. Also set all of the values in pState to zero.
130 * For Q7, Q15, and Q31 the following fields must also be initialized;
131 * recipTable, postShift
132 *
133 * \par
134 * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
135 * \par Fixed-Point Behavior:
136 * Care must be taken when using the Q15 and Q31 versions of the normalised LMS filter.
137 * The following issues must be considered:
138 * - Scaling of coefficients
139 * - Overflow and saturation
140 *
141 * \par Scaling of Coefficients:
142 * Filter coefficients are represented as fractional values and
143 * coefficients are restricted to lie in the range <code>[-1 +1)</code>.
144 * The fixed-point functions have an additional scaling parameter <code>postShift</code>.
145 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
146 * This essentially scales the filter coefficients by <code>2^postShift</code> and
147 * allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
148 * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled.
149 *
150 * \par Overflow and Saturation:
151 * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are
152 * described separately as part of the function specific documentation below.
153 */
154
155
156 /**
157 * @addtogroup LMS_NORM
158 * @{
159 */
160
161
162 /**
163 * @brief Processing function for floating-point normalized LMS filter.
164 * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
165 * @param[in] *pSrc points to the block of input data.
166 * @param[in] *pRef points to the block of reference data.
167 * @param[out] *pOut points to the block of output data.
168 * @param[out] *pErr points to the block of error data.
169 * @param[in] blockSize number of samples to process.
170 * @return none.
171 */
172
173 void arm_lms_norm_f32(
174 arm_lms_norm_instance_f32 * S,
175 float32_t * pSrc,
176 float32_t * pRef,
177 float32_t * pOut,
178 float32_t * pErr,
179 uint32_t blockSize)
180 {
181 float32_t *pState = S->pState; /* State pointer */
182 float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
183 float32_t *pStateCurnt; /* Points to the current sample of the state */
184 float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
185 float32_t mu = S->mu; /* Adaptive factor */
186 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
187 uint32_t tapCnt, blkCnt; /* Loop counters */
188 float32_t energy; /* Energy of the input */
189 float32_t sum, e, d; /* accumulator, error, reference data sample */
190 float32_t w, x0, in; /* weight factor, temporary variable to hold input sample and state */
191
192 /* Initializations of error, difference, Coefficient update */
193 e = 0.0f;
194 d = 0.0f;
195 w = 0.0f;
196
197 energy = S->energy;
198 x0 = S->x0;
199
200 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
201 /* pStateCurnt points to the location where the new input data should be written */
202 pStateCurnt = &(S->pState[(numTaps - 1u)]);
203
204 /* Loop over blockSize number of values */
205 blkCnt = blockSize;
206
207
208 #ifndef ARM_MATH_CM0_FAMILY
209
210 /* Run the below code for Cortex-M4 and Cortex-M3 */
211
212 while(blkCnt > 0u)
213 {
214 /* Copy the new input sample into the state buffer */
215 *pStateCurnt++ = *pSrc;
216
217 /* Initialize pState pointer */
218 px = pState;
219
220 /* Initialize coeff pointer */
221 pb = (pCoeffs);
222
223 /* Read the sample from input buffer */
224 in = *pSrc++;
225
226 /* Update the energy calculation */
227 energy -= x0 * x0;
228 energy += in * in;
229
230 /* Set the accumulator to zero */
231 sum = 0.0f;
232
233 /* Loop unrolling. Process 4 taps at a time. */
234 tapCnt = numTaps >> 2;
235
236 while(tapCnt > 0u)
237 {
238 /* Perform the multiply-accumulate */
239 sum += (*px++) * (*pb++);
240 sum += (*px++) * (*pb++);
241 sum += (*px++) * (*pb++);
242 sum += (*px++) * (*pb++);
243
244 /* Decrement the loop counter */
245 tapCnt--;
246 }
247
248 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
249 tapCnt = numTaps % 0x4u;
250
251 while(tapCnt > 0u)
252 {
253 /* Perform the multiply-accumulate */
254 sum += (*px++) * (*pb++);
255
256 /* Decrement the loop counter */
257 tapCnt--;
258 }
259
260 /* The result in the accumulator, store in the destination buffer. */
261 *pOut++ = sum;
262
263 /* Compute and store error */
264 d = (float32_t) (*pRef++);
265 e = d - sum;
266 *pErr++ = e;
267
268 /* Calculation of Weighting factor for updating filter coefficients */
269 /* epsilon value 0.000000119209289f */
270 w = (e * mu) / (energy + 0.000000119209289f);
271
272 /* Initialize pState pointer */
273 px = pState;
274
275 /* Initialize coeff pointer */
276 pb = (pCoeffs);
277
278 /* Loop unrolling. Process 4 taps at a time. */
279 tapCnt = numTaps >> 2;
280
281 /* Update filter coefficients */
282 while(tapCnt > 0u)
283 {
284 /* Perform the multiply-accumulate */
285 *pb += w * (*px++);
286 pb++;
287
288 *pb += w * (*px++);
289 pb++;
290
291 *pb += w * (*px++);
292 pb++;
293
294 *pb += w * (*px++);
295 pb++;
296
297
298 /* Decrement the loop counter */
299 tapCnt--;
300 }
301
302 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
303 tapCnt = numTaps % 0x4u;
304
305 while(tapCnt > 0u)
306 {
307 /* Perform the multiply-accumulate */
308 *pb += w * (*px++);
309 pb++;
310
311 /* Decrement the loop counter */
312 tapCnt--;
313 }
314
315 x0 = *pState;
316
317 /* Advance state pointer by 1 for the next sample */
318 pState = pState + 1;
319
320 /* Decrement the loop counter */
321 blkCnt--;
322 }
323
324 S->energy = energy;
325 S->x0 = x0;
326
327 /* Processing is complete. Now copy the last numTaps - 1 samples to the
328 satrt of the state buffer. This prepares the state buffer for the
329 next function call. */
330
331 /* Points to the start of the pState buffer */
332 pStateCurnt = S->pState;
333
334 /* Loop unrolling for (numTaps - 1u)/4 samples copy */
335 tapCnt = (numTaps - 1u) >> 2u;
336
337 /* copy data */
338 while(tapCnt > 0u)
339 {
340 *pStateCurnt++ = *pState++;
341 *pStateCurnt++ = *pState++;
342 *pStateCurnt++ = *pState++;
343 *pStateCurnt++ = *pState++;
344
345 /* Decrement the loop counter */
346 tapCnt--;
347 }
348
349 /* Calculate remaining number of copies */
350 tapCnt = (numTaps - 1u) % 0x4u;
351
352 /* Copy the remaining q31_t data */
353 while(tapCnt > 0u)
354 {
355 *pStateCurnt++ = *pState++;
356
357 /* Decrement the loop counter */
358 tapCnt--;
359 }
360
361 #else
362
363 /* Run the below code for Cortex-M0 */
364
365 while(blkCnt > 0u)
366 {
367 /* Copy the new input sample into the state buffer */
368 *pStateCurnt++ = *pSrc;
369
370 /* Initialize pState pointer */
371 px = pState;
372
373 /* Initialize pCoeffs pointer */
374 pb = pCoeffs;
375
376 /* Read the sample from input buffer */
377 in = *pSrc++;
378
379 /* Update the energy calculation */
380 energy -= x0 * x0;
381 energy += in * in;
382
383 /* Set the accumulator to zero */
384 sum = 0.0f;
385
386 /* Loop over numTaps number of values */
387 tapCnt = numTaps;
388
389 while(tapCnt > 0u)
390 {
391 /* Perform the multiply-accumulate */
392 sum += (*px++) * (*pb++);
393
394 /* Decrement the loop counter */
395 tapCnt--;
396 }
397
398 /* The result in the accumulator is stored in the destination buffer. */
399 *pOut++ = sum;
400
401 /* Compute and store error */
402 d = (float32_t) (*pRef++);
403 e = d - sum;
404 *pErr++ = e;
405
406 /* Calculation of Weighting factor for updating filter coefficients */
407 /* epsilon value 0.000000119209289f */
408 w = (e * mu) / (energy + 0.000000119209289f);
409
410 /* Initialize pState pointer */
411 px = pState;
412
413 /* Initialize pCcoeffs pointer */
414 pb = pCoeffs;
415
416 /* Loop over numTaps number of values */
417 tapCnt = numTaps;
418
419 while(tapCnt > 0u)
420 {
421 /* Perform the multiply-accumulate */
422 *pb += w * (*px++);
423 pb++;
424
425 /* Decrement the loop counter */
426 tapCnt--;
427 }
428
429 x0 = *pState;
430
431 /* Advance state pointer by 1 for the next sample */
432 pState = pState + 1;
433
434 /* Decrement the loop counter */
435 blkCnt--;
436 }
437
438 S->energy = energy;
439 S->x0 = x0;
440
441 /* Processing is complete. Now copy the last numTaps - 1 samples to the
442 satrt of the state buffer. This prepares the state buffer for the
443 next function call. */
444
445 /* Points to the start of the pState buffer */
446 pStateCurnt = S->pState;
447
448 /* Copy (numTaps - 1u) samples */
449 tapCnt = (numTaps - 1u);
450
451 /* Copy the remaining q31_t data */
452 while(tapCnt > 0u)
453 {
454 *pStateCurnt++ = *pState++;
455
456 /* Decrement the loop counter */
457 tapCnt--;
458 }
459
460 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
461
462 }
463
464 /**
465 * @} end of LMS_NORM group
466 */
Imprint / Impressum