]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_Maxim/TARGET_MAX32610/serial_api.c
remove experimental return, cleanup slash_question key
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / mbed / targets / hal / TARGET_Maxim / TARGET_MAX32610 / serial_api.c
1 /*******************************************************************************
2 * Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
17 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
18 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Except as contained in this notice, the name of Maxim Integrated
23 * Products, Inc. shall not be used except as stated in the Maxim Integrated
24 * Products, Inc. Branding Policy.
25 *
26 * The mere transfer of this software does not imply any licenses
27 * of trade secrets, proprietary technology, copyrights, patents,
28 * trademarks, maskwork rights, or any other form of intellectual
29 * property whatsoever. Maxim Integrated Products, Inc. retains all
30 * ownership rights.
31 *******************************************************************************
32 */
33
34 #include <string.h>
35 #include "mbed_assert.h"
36 #include "cmsis.h"
37 #include "serial_api.h"
38 #include "uart_regs.h"
39 #include "PeripheralPins.h"
40
41 #define UART_NUM 2
42 #define DEFAULT_BAUD 9600
43 #define DEFAULT_STOP 1
44 #define DEFAULT_PARITY ParityNone
45
46 #define UART_ERRORS (MXC_F_UART_INTFL_RX_FRAME_ERROR | \
47 MXC_F_UART_INTFL_RX_PARITY_ERROR | \
48 MXC_F_UART_INTFL_RX_OVERRUN)
49
50 // Variables for managing the stdio UART
51 int stdio_uart_inited;
52 serial_t stdio_uart;
53
54 // Variables for interrupt driven
55 static uart_irq_handler irq_handler;
56 static uint32_t serial_irq_ids[UART_NUM];
57
58 //******************************************************************************
59 void serial_init(serial_t *obj, PinName tx, PinName rx)
60 {
61 // Determine which uart is associated with each pin
62 UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
63 UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
64 UARTName uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
65
66 // Make sure that both pins are pointing to the same uart
67 MBED_ASSERT(uart != (UARTName)NC);
68
69 // Set the obj pointer to the proper uart
70 obj->uart = (mxc_uart_regs_t*)uart;
71
72 // Set the uart index
73 obj->index = MXC_UART_BASE_TO_INSTANCE(obj->uart);
74
75 // Configure the pins
76 pinmap_pinout(tx, PinMap_UART_TX);
77 pinmap_pinout(rx, PinMap_UART_RX);
78
79 // Flush the RX and TX FIFOs, clear the settings
80 obj->uart->ctrl = ( MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH);
81
82 // Disable interrupts
83 obj->uart->inten = 0;
84 obj->uart->intfl = 0;
85
86 // Configure to default settings
87 serial_baud(obj, DEFAULT_BAUD);
88 serial_format(obj, 8, ParityNone, 1);
89
90 // Manage stdio UART
91 if(uart == STDIO_UART) {
92 stdio_uart_inited = 1;
93 memcpy(&stdio_uart, obj, sizeof(serial_t));
94 }
95 }
96
97 //******************************************************************************
98 void serial_baud(serial_t *obj, int baudrate)
99 {
100 uint32_t idiv = 0, ddiv = 0, div = 0;
101
102 // Calculate the integer and decimal portions
103 div = SystemCoreClock / ((baudrate / 100) * 128);
104 idiv = (div / 100);
105 ddiv = (div - idiv * 100) * 128 / 100;
106
107 obj->uart->baud_int = idiv;
108 obj->uart->baud_div_128 = ddiv;
109
110 // Enable the baud clock
111 obj->uart->ctrl |= MXC_F_UART_CTRL_BAUD_CLK_EN;
112 }
113
114 //******************************************************************************
115 void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
116 {
117
118 // Check the validity of the inputs
119 MBED_ASSERT((data_bits > 4) && (data_bits < 9));
120 MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) ||
121 (parity == ParityEven) || (parity == ParityForced1) ||
122 (parity == ParityForced0));
123 MBED_ASSERT((stop_bits == 1) || (stop_bits == 2));
124
125 // Adjust the stop and data bits
126 stop_bits -= 1;
127 data_bits -= 5;
128
129 // Adjust the parity setting
130 int paren = 0, mode = 0;
131 switch (parity) {
132 case ParityNone:
133 paren = 0;
134 mode = 0;
135 break;
136 case ParityOdd :
137 paren = 1;
138 mode = 0;
139 break;
140 case ParityEven:
141 paren = 1;
142 mode = 1;
143 break;
144 case ParityForced1:
145 // Hardware does not support forced parity
146 MBED_ASSERT(0);
147 break;
148 case ParityForced0:
149 // Hardware does not support forced parity
150 MBED_ASSERT(0);
151 break;
152 default:
153 paren = 1;
154 mode = 0;
155 break;
156 }
157
158 obj->uart->ctrl |= ((data_bits << MXC_F_UART_CTRL_CHAR_LENGTH_POS) |
159 (stop_bits << MXC_F_UART_CTRL_STOP_BIT_MODE_POS) |
160 (paren << MXC_F_UART_CTRL_PARITY_ENABLE_POS) |
161 (mode << MXC_F_UART_CTRL_PARITY_MODE_POS));
162 }
163
164 //******************************************************************************
165 void uart_handler(mxc_uart_regs_t* uart, int id)
166 {
167 // Check for errors or RX Threshold
168 if(uart->intfl & (MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS)) {
169 irq_handler(serial_irq_ids[id], RxIrq);
170 uart->intfl &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD | UART_ERRORS);
171 }
172
173 // Check for TX Threshold
174 if(uart->intfl & MXC_F_UART_INTFL_TX_ALMOST_EMPTY) {
175 irq_handler(serial_irq_ids[id], TxIrq);
176 uart->intfl &= ~(MXC_F_UART_INTFL_TX_ALMOST_EMPTY);
177 }
178 }
179
180 void uart0_handler(void)
181 {
182 uart_handler(MXC_UART0, 0);
183 }
184 void uart1_handler(void)
185 {
186 uart_handler(MXC_UART1, 1);
187 }
188
189 //******************************************************************************
190 void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
191 {
192 irq_handler = handler;
193 serial_irq_ids[obj->index] = id;
194 }
195
196 //******************************************************************************
197 void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
198 {
199 if(obj->index == 0) {
200 NVIC_SetVector(UART0_IRQn, (uint32_t)uart0_handler);
201 NVIC_EnableIRQ(UART0_IRQn);
202 } else {
203 NVIC_SetVector(UART1_IRQn, (uint32_t)uart1_handler);
204 NVIC_EnableIRQ(UART1_IRQn);
205 }
206
207 if(irq == RxIrq) {
208 // Set the RX FIFO Threshold to 1
209 obj->uart->ctrl &= ~MXC_F_UART_CTRL_RX_THRESHOLD;
210 obj->uart->ctrl |= 0x1;
211 // Enable RX FIFO Threshold Interrupt
212 if(enable) {
213 // Clear pending interrupts
214 obj->uart->intfl = 0;
215 obj->uart->inten |= (MXC_F_UART_INTFL_RX_OVER_THRESHOLD |
216 UART_ERRORS);
217 } else {
218 // Clear pending interrupts
219 obj->uart->intfl = 0;
220 obj->uart->inten &= ~(MXC_F_UART_INTFL_RX_OVER_THRESHOLD |
221 UART_ERRORS);
222 }
223
224 } else if (irq == TxIrq) {
225 // Enable TX Almost empty Interrupt
226 if(enable) {
227 // Clear pending interrupts
228 obj->uart->intfl = 0;
229 obj->uart->inten |= MXC_F_UART_INTFL_TX_ALMOST_EMPTY;
230 } else {
231 // Clear pending interrupts
232 obj->uart->intfl = 0;
233 obj->uart->inten &= ~MXC_F_UART_INTFL_TX_ALMOST_EMPTY;
234 }
235
236 } else {
237 MBED_ASSERT(0);
238 }
239 }
240
241
242 //******************************************************************************
243 int serial_getc(serial_t *obj)
244 {
245 int c;
246
247 // Wait for data to be available
248 while(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY) {}
249 c = obj->uart->tx_rx_fifo & 0xFF;
250
251 // Echo characters for stdio
252 if (obj->uart == (mxc_uart_regs_t*)STDIO_UART) {
253 obj->uart->tx_rx_fifo = c;
254 }
255
256 return c;
257 }
258
259 //******************************************************************************
260 void serial_putc(serial_t *obj, int c)
261 {
262 // Append a carriage return for stdio
263 if ((c == (int)'\n') && (obj->uart == (mxc_uart_regs_t*)STDIO_UART)) {
264 while(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL) {}
265 obj->uart->tx_rx_fifo = '\r';
266 }
267
268 // Wait for TXFIFO to not be full
269 while(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL) {}
270 obj->uart->tx_rx_fifo = c;
271
272 }
273
274 //******************************************************************************
275 int serial_readable(serial_t *obj)
276 {
277 return (!(obj->uart->status & MXC_F_UART_STATUS_RX_FIFO_EMPTY));
278 }
279
280 //******************************************************************************
281 int serial_writable(serial_t *obj)
282 {
283 return (!(obj->uart->status & MXC_F_UART_STATUS_TX_FIFO_FULL));
284 }
285
286 //******************************************************************************
287 void serial_clear(serial_t *obj)
288 {
289 // Clear the rx and tx fifos
290 obj->uart->ctrl |= (MXC_F_UART_CTRL_TX_FIFO_FLUSH | MXC_F_UART_CTRL_RX_FIFO_FLUSH );
291 }
292
293
294 //******************************************************************************
295 void serial_break_set(serial_t *obj)
296 {
297 // Make sure that nothing is being sent
298 while(obj->uart->status & MXC_F_UART_STATUS_RX_BUSY) {}
299
300 // Disable the clock to pause any transmission
301 obj->uart->ctrl &= ~MXC_F_UART_CTRL_BAUD_CLK_EN ;
302 }
303
304 //******************************************************************************
305 void serial_break_clear(serial_t *obj)
306 {
307 obj->uart->ctrl |= MXC_F_UART_CTRL_BAUD_CLK_EN;
308 }
309
310
311 //******************************************************************************
312 void serial_pinout_tx(PinName tx)
313 {
314 pinmap_pinout(tx, PinMap_UART_TX);
315 }
316
317
318 //******************************************************************************
319 void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
320 {
321 if(FlowControlNone == type) {
322 // Disable hardware flow control
323 obj->uart->ctrl &= ~(MXC_F_UART_CTRL_HW_FLOW_CTRL_EN);
324 return;
325 }
326
327 // Check to see if we can use HW flow control
328 UARTName uart_cts = (UARTName)pinmap_peripheral(txflow, PinMap_UART_CTS);
329 UARTName uart_rts = (UARTName)pinmap_peripheral(rxflow, PinMap_UART_RTS);
330 UARTName uart = (UARTName)pinmap_merge(uart_cts, uart_rts);
331
332 if((FlowControlCTS == type) || (FlowControlRTSCTS== type)) {
333 // Make sure pin is in the PinMap
334 MBED_ASSERT(uart_cts != (UARTName)NC);
335
336 // Enable the pin for CTS function
337 pinmap_pinout(txflow, PinMap_UART_CTS);
338 }
339
340 if((FlowControlRTS == type) || (FlowControlRTSCTS== type)) {
341 // Make sure pin is in the PinMap
342 MBED_ASSERT(uart_rts != (UARTName)NC);
343
344 // Enable the pin for RTS function
345 pinmap_pinout(rxflow, PinMap_UART_RTS);
346 }
347
348 if(FlowControlRTSCTS == type){
349 // Make sure that the pins are pointing to the same UART
350 MBED_ASSERT(uart != (UARTName)NC);
351 }
352
353 // Enable hardware flow control
354 obj->uart->ctrl |= MXC_F_UART_CTRL_HW_FLOW_CTRL_EN;
355 }
Imprint / Impressum