]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_conv_fast_q31.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_conv_fast_q31.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_conv_fast_q31.c
9 *
10 * Description: Q31 Convolution (fast version).
11 *
12 * Target Processor: Cortex-M4/Cortex-M3
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup Conv
49 * @{
50 */
51
52 /**
53 * @param[in] *pSrcA points to the first input sequence.
54 * @param[in] srcALen length of the first input sequence.
55 * @param[in] *pSrcB points to the second input sequence.
56 * @param[in] srcBLen length of the second input sequence.
57 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
58 * @return none.
59 *
60 * @details
61 * <b>Scaling and Overflow Behavior:</b>
62 *
63 * \par
64 * This function is optimized for speed at the expense of fixed-point precision and overflow protection.
65 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
66 * These intermediate results are accumulated in a 32-bit register in 2.30 format.
67 * Finally, the accumulator is saturated and converted to a 1.31 result.
68 *
69 * \par
70 * The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result.
71 * In order to avoid overflows completely the input signals must be scaled down.
72 * Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
73 * as maximum of min(srcALen, srcBLen) number of additions are carried internally.
74 *
75 * \par
76 * See <code>arm_conv_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision.
77 */
78
79 void arm_conv_fast_q31(
80 q31_t * pSrcA,
81 uint32_t srcALen,
82 q31_t * pSrcB,
83 uint32_t srcBLen,
84 q31_t * pDst)
85 {
86 q31_t *pIn1; /* inputA pointer */
87 q31_t *pIn2; /* inputB pointer */
88 q31_t *pOut = pDst; /* output pointer */
89 q31_t *px; /* Intermediate inputA pointer */
90 q31_t *py; /* Intermediate inputB pointer */
91 q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
92 q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
93 q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
94 uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
95
96 /* The algorithm implementation is based on the lengths of the inputs. */
97 /* srcB is always made to slide across srcA. */
98 /* So srcBLen is always considered as shorter or equal to srcALen */
99 if(srcALen >= srcBLen)
100 {
101 /* Initialization of inputA pointer */
102 pIn1 = pSrcA;
103
104 /* Initialization of inputB pointer */
105 pIn2 = pSrcB;
106 }
107 else
108 {
109 /* Initialization of inputA pointer */
110 pIn1 = pSrcB;
111
112 /* Initialization of inputB pointer */
113 pIn2 = pSrcA;
114
115 /* srcBLen is always considered as shorter or equal to srcALen */
116 j = srcBLen;
117 srcBLen = srcALen;
118 srcALen = j;
119 }
120
121 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
122 /* The function is internally
123 * divided into three stages according to the number of multiplications that has to be
124 * taken place between inputA samples and inputB samples. In the first stage of the
125 * algorithm, the multiplications increase by one for every iteration.
126 * In the second stage of the algorithm, srcBLen number of multiplications are done.
127 * In the third stage of the algorithm, the multiplications decrease by one
128 * for every iteration. */
129
130 /* The algorithm is implemented in three stages.
131 The loop counters of each stage is initiated here. */
132 blockSize1 = srcBLen - 1u;
133 blockSize2 = srcALen - (srcBLen - 1u);
134 blockSize3 = blockSize1;
135
136 /* --------------------------
137 * Initializations of stage1
138 * -------------------------*/
139
140 /* sum = x[0] * y[0]
141 * sum = x[0] * y[1] + x[1] * y[0]
142 * ....
143 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
144 */
145
146 /* In this stage the MAC operations are increased by 1 for every iteration.
147 The count variable holds the number of MAC operations performed */
148 count = 1u;
149
150 /* Working pointer of inputA */
151 px = pIn1;
152
153 /* Working pointer of inputB */
154 py = pIn2;
155
156
157 /* ------------------------
158 * Stage1 process
159 * ----------------------*/
160
161 /* The first stage starts here */
162 while(blockSize1 > 0u)
163 {
164 /* Accumulator is made zero for every iteration */
165 sum = 0;
166
167 /* Apply loop unrolling and compute 4 MACs simultaneously. */
168 k = count >> 2u;
169
170 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
171 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
172 while(k > 0u)
173 {
174 /* x[0] * y[srcBLen - 1] */
175 sum = (q31_t) ((((q63_t) sum << 32) +
176 ((q63_t) * px++ * (*py--))) >> 32);
177
178 /* x[1] * y[srcBLen - 2] */
179 sum = (q31_t) ((((q63_t) sum << 32) +
180 ((q63_t) * px++ * (*py--))) >> 32);
181
182 /* x[2] * y[srcBLen - 3] */
183 sum = (q31_t) ((((q63_t) sum << 32) +
184 ((q63_t) * px++ * (*py--))) >> 32);
185
186 /* x[3] * y[srcBLen - 4] */
187 sum = (q31_t) ((((q63_t) sum << 32) +
188 ((q63_t) * px++ * (*py--))) >> 32);
189
190 /* Decrement the loop counter */
191 k--;
192 }
193
194 /* If the count is not a multiple of 4, compute any remaining MACs here.
195 ** No loop unrolling is used. */
196 k = count % 0x4u;
197
198 while(k > 0u)
199 {
200 /* Perform the multiply-accumulate */
201 sum = (q31_t) ((((q63_t) sum << 32) +
202 ((q63_t) * px++ * (*py--))) >> 32);
203
204 /* Decrement the loop counter */
205 k--;
206 }
207
208 /* Store the result in the accumulator in the destination buffer. */
209 *pOut++ = sum << 1;
210
211 /* Update the inputA and inputB pointers for next MAC calculation */
212 py = pIn2 + count;
213 px = pIn1;
214
215 /* Increment the MAC count */
216 count++;
217
218 /* Decrement the loop counter */
219 blockSize1--;
220 }
221
222 /* --------------------------
223 * Initializations of stage2
224 * ------------------------*/
225
226 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
227 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
228 * ....
229 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
230 */
231
232 /* Working pointer of inputA */
233 px = pIn1;
234
235 /* Working pointer of inputB */
236 pSrc2 = pIn2 + (srcBLen - 1u);
237 py = pSrc2;
238
239 /* count is index by which the pointer pIn1 to be incremented */
240 count = 0u;
241
242 /* -------------------
243 * Stage2 process
244 * ------------------*/
245
246 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
247 * So, to loop unroll over blockSize2,
248 * srcBLen should be greater than or equal to 4 */
249 if(srcBLen >= 4u)
250 {
251 /* Loop unroll over blockSize2, by 4 */
252 blkCnt = blockSize2 >> 2u;
253
254 while(blkCnt > 0u)
255 {
256 /* Set all accumulators to zero */
257 acc0 = 0;
258 acc1 = 0;
259 acc2 = 0;
260 acc3 = 0;
261
262 /* read x[0], x[1], x[2] samples */
263 x0 = *(px++);
264 x1 = *(px++);
265 x2 = *(px++);
266
267 /* Apply loop unrolling and compute 4 MACs simultaneously. */
268 k = srcBLen >> 2u;
269
270 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
271 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
272 do
273 {
274 /* Read y[srcBLen - 1] sample */
275 c0 = *(py--);
276
277 /* Read x[3] sample */
278 x3 = *(px++);
279
280 /* Perform the multiply-accumulates */
281 /* acc0 += x[0] * y[srcBLen - 1] */
282 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
283
284 /* acc1 += x[1] * y[srcBLen - 1] */
285 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
286
287 /* acc2 += x[2] * y[srcBLen - 1] */
288 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
289
290 /* acc3 += x[3] * y[srcBLen - 1] */
291 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
292
293 /* Read y[srcBLen - 2] sample */
294 c0 = *(py--);
295
296 /* Read x[4] sample */
297 x0 = *(px++);
298
299 /* Perform the multiply-accumulate */
300 /* acc0 += x[1] * y[srcBLen - 2] */
301 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32);
302 /* acc1 += x[2] * y[srcBLen - 2] */
303 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32);
304 /* acc2 += x[3] * y[srcBLen - 2] */
305 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32);
306 /* acc3 += x[4] * y[srcBLen - 2] */
307 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32);
308
309 /* Read y[srcBLen - 3] sample */
310 c0 = *(py--);
311
312 /* Read x[5] sample */
313 x1 = *(px++);
314
315 /* Perform the multiply-accumulates */
316 /* acc0 += x[2] * y[srcBLen - 3] */
317 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32);
318 /* acc1 += x[3] * y[srcBLen - 3] */
319 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32);
320 /* acc2 += x[4] * y[srcBLen - 3] */
321 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32);
322 /* acc3 += x[5] * y[srcBLen - 3] */
323 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32);
324
325 /* Read y[srcBLen - 4] sample */
326 c0 = *(py--);
327
328 /* Read x[6] sample */
329 x2 = *(px++);
330
331 /* Perform the multiply-accumulates */
332 /* acc0 += x[3] * y[srcBLen - 4] */
333 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32);
334 /* acc1 += x[4] * y[srcBLen - 4] */
335 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32);
336 /* acc2 += x[5] * y[srcBLen - 4] */
337 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32);
338 /* acc3 += x[6] * y[srcBLen - 4] */
339 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32);
340
341
342 } while(--k);
343
344 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
345 ** No loop unrolling is used. */
346 k = srcBLen % 0x4u;
347
348 while(k > 0u)
349 {
350 /* Read y[srcBLen - 5] sample */
351 c0 = *(py--);
352
353 /* Read x[7] sample */
354 x3 = *(px++);
355
356 /* Perform the multiply-accumulates */
357 /* acc0 += x[4] * y[srcBLen - 5] */
358 acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32);
359 /* acc1 += x[5] * y[srcBLen - 5] */
360 acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32);
361 /* acc2 += x[6] * y[srcBLen - 5] */
362 acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32);
363 /* acc3 += x[7] * y[srcBLen - 5] */
364 acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32);
365
366 /* Reuse the present samples for the next MAC */
367 x0 = x1;
368 x1 = x2;
369 x2 = x3;
370
371 /* Decrement the loop counter */
372 k--;
373 }
374
375 /* Store the results in the accumulators in the destination buffer. */
376 *pOut++ = (q31_t) (acc0 << 1);
377 *pOut++ = (q31_t) (acc1 << 1);
378 *pOut++ = (q31_t) (acc2 << 1);
379 *pOut++ = (q31_t) (acc3 << 1);
380
381 /* Increment the pointer pIn1 index, count by 4 */
382 count += 4u;
383
384 /* Update the inputA and inputB pointers for next MAC calculation */
385 px = pIn1 + count;
386 py = pSrc2;
387
388 /* Decrement the loop counter */
389 blkCnt--;
390 }
391
392 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
393 ** No loop unrolling is used. */
394 blkCnt = blockSize2 % 0x4u;
395
396 while(blkCnt > 0u)
397 {
398 /* Accumulator is made zero for every iteration */
399 sum = 0;
400
401 /* Apply loop unrolling and compute 4 MACs simultaneously. */
402 k = srcBLen >> 2u;
403
404 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
405 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
406 while(k > 0u)
407 {
408 /* Perform the multiply-accumulates */
409 sum = (q31_t) ((((q63_t) sum << 32) +
410 ((q63_t) * px++ * (*py--))) >> 32);
411 sum = (q31_t) ((((q63_t) sum << 32) +
412 ((q63_t) * px++ * (*py--))) >> 32);
413 sum = (q31_t) ((((q63_t) sum << 32) +
414 ((q63_t) * px++ * (*py--))) >> 32);
415 sum = (q31_t) ((((q63_t) sum << 32) +
416 ((q63_t) * px++ * (*py--))) >> 32);
417
418 /* Decrement the loop counter */
419 k--;
420 }
421
422 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
423 ** No loop unrolling is used. */
424 k = srcBLen % 0x4u;
425
426 while(k > 0u)
427 {
428 /* Perform the multiply-accumulate */
429 sum = (q31_t) ((((q63_t) sum << 32) +
430 ((q63_t) * px++ * (*py--))) >> 32);
431
432 /* Decrement the loop counter */
433 k--;
434 }
435
436 /* Store the result in the accumulator in the destination buffer. */
437 *pOut++ = sum << 1;
438
439 /* Increment the MAC count */
440 count++;
441
442 /* Update the inputA and inputB pointers for next MAC calculation */
443 px = pIn1 + count;
444 py = pSrc2;
445
446 /* Decrement the loop counter */
447 blkCnt--;
448 }
449 }
450 else
451 {
452 /* If the srcBLen is not a multiple of 4,
453 * the blockSize2 loop cannot be unrolled by 4 */
454 blkCnt = blockSize2;
455
456 while(blkCnt > 0u)
457 {
458 /* Accumulator is made zero for every iteration */
459 sum = 0;
460
461 /* srcBLen number of MACS should be performed */
462 k = srcBLen;
463
464 while(k > 0u)
465 {
466 /* Perform the multiply-accumulate */
467 sum = (q31_t) ((((q63_t) sum << 32) +
468 ((q63_t) * px++ * (*py--))) >> 32);
469
470 /* Decrement the loop counter */
471 k--;
472 }
473
474 /* Store the result in the accumulator in the destination buffer. */
475 *pOut++ = sum << 1;
476
477 /* Increment the MAC count */
478 count++;
479
480 /* Update the inputA and inputB pointers for next MAC calculation */
481 px = pIn1 + count;
482 py = pSrc2;
483
484 /* Decrement the loop counter */
485 blkCnt--;
486 }
487 }
488
489
490 /* --------------------------
491 * Initializations of stage3
492 * -------------------------*/
493
494 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
495 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
496 * ....
497 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
498 * sum += x[srcALen-1] * y[srcBLen-1]
499 */
500
501 /* In this stage the MAC operations are decreased by 1 for every iteration.
502 The blockSize3 variable holds the number of MAC operations performed */
503
504 /* Working pointer of inputA */
505 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
506 px = pSrc1;
507
508 /* Working pointer of inputB */
509 pSrc2 = pIn2 + (srcBLen - 1u);
510 py = pSrc2;
511
512 /* -------------------
513 * Stage3 process
514 * ------------------*/
515
516 while(blockSize3 > 0u)
517 {
518 /* Accumulator is made zero for every iteration */
519 sum = 0;
520
521 /* Apply loop unrolling and compute 4 MACs simultaneously. */
522 k = blockSize3 >> 2u;
523
524 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
525 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
526 while(k > 0u)
527 {
528 /* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
529 sum = (q31_t) ((((q63_t) sum << 32) +
530 ((q63_t) * px++ * (*py--))) >> 32);
531
532 /* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
533 sum = (q31_t) ((((q63_t) sum << 32) +
534 ((q63_t) * px++ * (*py--))) >> 32);
535
536 /* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
537 sum = (q31_t) ((((q63_t) sum << 32) +
538 ((q63_t) * px++ * (*py--))) >> 32);
539
540 /* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
541 sum = (q31_t) ((((q63_t) sum << 32) +
542 ((q63_t) * px++ * (*py--))) >> 32);
543
544 /* Decrement the loop counter */
545 k--;
546 }
547
548 /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
549 ** No loop unrolling is used. */
550 k = blockSize3 % 0x4u;
551
552 while(k > 0u)
553 {
554 /* Perform the multiply-accumulate */
555 sum = (q31_t) ((((q63_t) sum << 32) +
556 ((q63_t) * px++ * (*py--))) >> 32);
557
558 /* Decrement the loop counter */
559 k--;
560 }
561
562 /* Store the result in the accumulator in the destination buffer. */
563 *pOut++ = sum << 1;
564
565 /* Update the inputA and inputB pointers for next MAC calculation */
566 px = ++pSrc1;
567 py = pSrc2;
568
569 /* Decrement the loop counter */
570 blockSize3--;
571 }
572
573 }
574
575 /**
576 * @} end of Conv group
577 */
Imprint / Impressum