]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/FilteringFunctions/arm_lms_norm_q15.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / FilteringFunctions / arm_lms_norm_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_lms_norm_q15.c
9 *
10 * Description: Q15 NLMS filter.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupFilters
45 */
46
47 /**
48 * @addtogroup LMS_NORM
49 * @{
50 */
51
52 /**
53 * @brief Processing function for Q15 normalized LMS filter.
54 * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
55 * @param[in] *pSrc points to the block of input data.
56 * @param[in] *pRef points to the block of reference data.
57 * @param[out] *pOut points to the block of output data.
58 * @param[out] *pErr points to the block of error data.
59 * @param[in] blockSize number of samples to process.
60 * @return none.
61 *
62 * <b>Scaling and Overflow Behavior:</b>
63 * \par
64 * The function is implemented using a 64-bit internal accumulator.
65 * Both coefficients and state variables are represented in 1.15 format and
66 * multiplications yield a 2.30 result. The 2.30 intermediate results are
67 * accumulated in a 64-bit accumulator in 34.30 format.
68 * There is no risk of internal overflow with this approach and the full
69 * precision of intermediate multiplications is preserved. After all additions
70 * have been performed, the accumulator is truncated to 34.15 format by
71 * discarding low 15 bits. Lastly, the accumulator is saturated to yield a
72 * result in 1.15 format.
73 *
74 * \par
75 * In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.
76 *
77 */
78
79 void arm_lms_norm_q15(
80 arm_lms_norm_instance_q15 * S,
81 q15_t * pSrc,
82 q15_t * pRef,
83 q15_t * pOut,
84 q15_t * pErr,
85 uint32_t blockSize)
86 {
87 q15_t *pState = S->pState; /* State pointer */
88 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
89 q15_t *pStateCurnt; /* Points to the current sample of the state */
90 q15_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
91 q15_t mu = S->mu; /* Adaptive factor */
92 uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
93 uint32_t tapCnt, blkCnt; /* Loop counters */
94 q31_t energy; /* Energy of the input */
95 q63_t acc; /* Accumulator */
96 q15_t e = 0, d = 0; /* error, reference data sample */
97 q15_t w = 0, in; /* weight factor and state */
98 q15_t x0; /* temporary variable to hold input sample */
99 //uint32_t shift = (uint32_t) S->postShift + 1u; /* Shift to be applied to the output */
100 q15_t errorXmu, oneByEnergy; /* Temporary variables to store error and mu product and reciprocal of energy */
101 q15_t postShift; /* Post shift to be applied to weight after reciprocal calculation */
102 q31_t coef; /* Teporary variable for coefficient */
103 q31_t acc_l, acc_h;
104 int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
105 int32_t uShift = (32 - lShift);
106
107 energy = S->energy;
108 x0 = S->x0;
109
110 /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
111 /* pStateCurnt points to the location where the new input data should be written */
112 pStateCurnt = &(S->pState[(numTaps - 1u)]);
113
114 /* Loop over blockSize number of values */
115 blkCnt = blockSize;
116
117
118 #ifndef ARM_MATH_CM0_FAMILY
119
120 /* Run the below code for Cortex-M4 and Cortex-M3 */
121
122 while(blkCnt > 0u)
123 {
124 /* Copy the new input sample into the state buffer */
125 *pStateCurnt++ = *pSrc;
126
127 /* Initialize pState pointer */
128 px = pState;
129
130 /* Initialize coeff pointer */
131 pb = (pCoeffs);
132
133 /* Read the sample from input buffer */
134 in = *pSrc++;
135
136 /* Update the energy calculation */
137 energy -= (((q31_t) x0 * (x0)) >> 15);
138 energy += (((q31_t) in * (in)) >> 15);
139
140 /* Set the accumulator to zero */
141 acc = 0;
142
143 /* Loop unrolling. Process 4 taps at a time. */
144 tapCnt = numTaps >> 2;
145
146 while(tapCnt > 0u)
147 {
148
149 /* Perform the multiply-accumulate */
150 #ifndef UNALIGNED_SUPPORT_DISABLE
151
152 acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
153 acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
154
155 #else
156
157 acc += (((q31_t) * px++ * (*pb++)));
158 acc += (((q31_t) * px++ * (*pb++)));
159 acc += (((q31_t) * px++ * (*pb++)));
160 acc += (((q31_t) * px++ * (*pb++)));
161
162 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
163
164 /* Decrement the loop counter */
165 tapCnt--;
166 }
167
168 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
169 tapCnt = numTaps % 0x4u;
170
171 while(tapCnt > 0u)
172 {
173 /* Perform the multiply-accumulate */
174 acc += (((q31_t) * px++ * (*pb++)));
175
176 /* Decrement the loop counter */
177 tapCnt--;
178 }
179
180 /* Calc lower part of acc */
181 acc_l = acc & 0xffffffff;
182
183 /* Calc upper part of acc */
184 acc_h = (acc >> 32) & 0xffffffff;
185
186 /* Apply shift for lower part of acc and upper part of acc */
187 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
188
189 /* Converting the result to 1.15 format and saturate the output */
190 acc = __SSAT(acc, 16u);
191
192 /* Store the result from accumulator into the destination buffer. */
193 *pOut++ = (q15_t) acc;
194
195 /* Compute and store error */
196 d = *pRef++;
197 e = d - (q15_t) acc;
198 *pErr++ = e;
199
200 /* Calculation of 1/energy */
201 postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
202 &oneByEnergy, S->recipTable);
203
204 /* Calculation of e * mu value */
205 errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
206
207 /* Calculation of (e * mu) * (1/energy) value */
208 acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
209
210 /* Weighting factor for the normalized version */
211 w = (q15_t) __SSAT((q31_t) acc, 16);
212
213 /* Initialize pState pointer */
214 px = pState;
215
216 /* Initialize coeff pointer */
217 pb = (pCoeffs);
218
219 /* Loop unrolling. Process 4 taps at a time. */
220 tapCnt = numTaps >> 2;
221
222 /* Update filter coefficients */
223 while(tapCnt > 0u)
224 {
225 coef = *pb + (((q31_t) w * (*px++)) >> 15);
226 *pb++ = (q15_t) __SSAT((coef), 16);
227 coef = *pb + (((q31_t) w * (*px++)) >> 15);
228 *pb++ = (q15_t) __SSAT((coef), 16);
229 coef = *pb + (((q31_t) w * (*px++)) >> 15);
230 *pb++ = (q15_t) __SSAT((coef), 16);
231 coef = *pb + (((q31_t) w * (*px++)) >> 15);
232 *pb++ = (q15_t) __SSAT((coef), 16);
233
234 /* Decrement the loop counter */
235 tapCnt--;
236 }
237
238 /* If the filter length is not a multiple of 4, compute the remaining filter taps */
239 tapCnt = numTaps % 0x4u;
240
241 while(tapCnt > 0u)
242 {
243 /* Perform the multiply-accumulate */
244 coef = *pb + (((q31_t) w * (*px++)) >> 15);
245 *pb++ = (q15_t) __SSAT((coef), 16);
246
247 /* Decrement the loop counter */
248 tapCnt--;
249 }
250
251 /* Read the sample from state buffer */
252 x0 = *pState;
253
254 /* Advance state pointer by 1 for the next sample */
255 pState = pState + 1u;
256
257 /* Decrement the loop counter */
258 blkCnt--;
259 }
260
261 /* Save energy and x0 values for the next frame */
262 S->energy = (q15_t) energy;
263 S->x0 = x0;
264
265 /* Processing is complete. Now copy the last numTaps - 1 samples to the
266 satrt of the state buffer. This prepares the state buffer for the
267 next function call. */
268
269 /* Points to the start of the pState buffer */
270 pStateCurnt = S->pState;
271
272 /* Calculation of count for copying integer writes */
273 tapCnt = (numTaps - 1u) >> 2;
274
275 while(tapCnt > 0u)
276 {
277
278 #ifndef UNALIGNED_SUPPORT_DISABLE
279
280 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
281 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
282
283 #else
284
285 *pStateCurnt++ = *pState++;
286 *pStateCurnt++ = *pState++;
287 *pStateCurnt++ = *pState++;
288 *pStateCurnt++ = *pState++;
289
290 #endif
291
292 tapCnt--;
293
294 }
295
296 /* Calculation of count for remaining q15_t data */
297 tapCnt = (numTaps - 1u) % 0x4u;
298
299 /* copy data */
300 while(tapCnt > 0u)
301 {
302 *pStateCurnt++ = *pState++;
303
304 /* Decrement the loop counter */
305 tapCnt--;
306 }
307
308 #else
309
310 /* Run the below code for Cortex-M0 */
311
312 while(blkCnt > 0u)
313 {
314 /* Copy the new input sample into the state buffer */
315 *pStateCurnt++ = *pSrc;
316
317 /* Initialize pState pointer */
318 px = pState;
319
320 /* Initialize pCoeffs pointer */
321 pb = pCoeffs;
322
323 /* Read the sample from input buffer */
324 in = *pSrc++;
325
326 /* Update the energy calculation */
327 energy -= (((q31_t) x0 * (x0)) >> 15);
328 energy += (((q31_t) in * (in)) >> 15);
329
330 /* Set the accumulator to zero */
331 acc = 0;
332
333 /* Loop over numTaps number of values */
334 tapCnt = numTaps;
335
336 while(tapCnt > 0u)
337 {
338 /* Perform the multiply-accumulate */
339 acc += (((q31_t) * px++ * (*pb++)));
340
341 /* Decrement the loop counter */
342 tapCnt--;
343 }
344
345 /* Calc lower part of acc */
346 acc_l = acc & 0xffffffff;
347
348 /* Calc upper part of acc */
349 acc_h = (acc >> 32) & 0xffffffff;
350
351 /* Apply shift for lower part of acc and upper part of acc */
352 acc = (uint32_t) acc_l >> lShift | acc_h << uShift;
353
354 /* Converting the result to 1.15 format and saturate the output */
355 acc = __SSAT(acc, 16u);
356
357 /* Converting the result to 1.15 format */
358 //acc = __SSAT((acc >> (16u - shift)), 16u);
359
360 /* Store the result from accumulator into the destination buffer. */
361 *pOut++ = (q15_t) acc;
362
363 /* Compute and store error */
364 d = *pRef++;
365 e = d - (q15_t) acc;
366 *pErr++ = e;
367
368 /* Calculation of 1/energy */
369 postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
370 &oneByEnergy, S->recipTable);
371
372 /* Calculation of e * mu value */
373 errorXmu = (q15_t) (((q31_t) e * mu) >> 15);
374
375 /* Calculation of (e * mu) * (1/energy) value */
376 acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));
377
378 /* Weighting factor for the normalized version */
379 w = (q15_t) __SSAT((q31_t) acc, 16);
380
381 /* Initialize pState pointer */
382 px = pState;
383
384 /* Initialize coeff pointer */
385 pb = (pCoeffs);
386
387 /* Loop over numTaps number of values */
388 tapCnt = numTaps;
389
390 while(tapCnt > 0u)
391 {
392 /* Perform the multiply-accumulate */
393 coef = *pb + (((q31_t) w * (*px++)) >> 15);
394 *pb++ = (q15_t) __SSAT((coef), 16);
395
396 /* Decrement the loop counter */
397 tapCnt--;
398 }
399
400 /* Read the sample from state buffer */
401 x0 = *pState;
402
403 /* Advance state pointer by 1 for the next sample */
404 pState = pState + 1u;
405
406 /* Decrement the loop counter */
407 blkCnt--;
408 }
409
410 /* Save energy and x0 values for the next frame */
411 S->energy = (q15_t) energy;
412 S->x0 = x0;
413
414 /* Processing is complete. Now copy the last numTaps - 1 samples to the
415 satrt of the state buffer. This prepares the state buffer for the
416 next function call. */
417
418 /* Points to the start of the pState buffer */
419 pStateCurnt = S->pState;
420
421 /* copy (numTaps - 1u) data */
422 tapCnt = (numTaps - 1u);
423
424 /* copy data */
425 while(tapCnt > 0u)
426 {
427 *pStateCurnt++ = *pState++;
428
429 /* Decrement the loop counter */
430 tapCnt--;
431 }
432
433 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
434
435 }
436
437
438 /**
439 * @} end of LMS_NORM group
440 */
Imprint / Impressum