]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/MatrixFunctions/arm_mat_mult_q31.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / MatrixFunctions / arm_mat_mult_q31.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_mat_mult_q31.c
9 *
10 * Description: Q31 matrix multiplication.
11 *
12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * - Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * - Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in
21 * the documentation and/or other materials provided with the
22 * distribution.
23 * - Neither the name of ARM LIMITED nor the names of its contributors
24 * may be used to endorse or promote products derived from this
25 * software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGE.
39 * -------------------------------------------------------------------- */
40
41 #include "arm_math.h"
42
43 /**
44 * @ingroup groupMatrix
45 */
46
47 /**
48 * @addtogroup MatrixMult
49 * @{
50 */
51
52 /**
53 * @brief Q31 matrix multiplication
54 * @param[in] *pSrcA points to the first input matrix structure
55 * @param[in] *pSrcB points to the second input matrix structure
56 * @param[out] *pDst points to output matrix structure
57 * @return The function returns either
58 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
59 *
60 * @details
61 * <b>Scaling and Overflow Behavior:</b>
62 *
63 * \par
64 * The function is implemented using an internal 64-bit accumulator.
65 * The accumulator has a 2.62 format and maintains full precision of the intermediate
66 * multiplication results but provides only a single guard bit. There is no saturation
67 * on intermediate additions. Thus, if the accumulator overflows it wraps around and
68 * distorts the result. The input signals should be scaled down to avoid intermediate
69 * overflows. The input is thus scaled down by log2(numColsA) bits
70 * to avoid overflows, as a total of numColsA additions are performed internally.
71 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
72 *
73 * \par
74 * See <code>arm_mat_mult_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
75 *
76 */
77
78 arm_status arm_mat_mult_q31(
79 const arm_matrix_instance_q31 * pSrcA,
80 const arm_matrix_instance_q31 * pSrcB,
81 arm_matrix_instance_q31 * pDst)
82 {
83 q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
84 q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
85 q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
86 q31_t *pOut = pDst->pData; /* output data matrix pointer */
87 q31_t *px; /* Temporary output data matrix pointer */
88 q63_t sum; /* Accumulator */
89 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
90 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
91 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
92
93 #ifndef ARM_MATH_CM0_FAMILY
94
95 /* Run the below code for Cortex-M4 and Cortex-M3 */
96
97 uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
98 arm_status status; /* status of matrix multiplication */
99 q31_t a0, a1, a2, a3, b0, b1, b2, b3;
100
101 #ifdef ARM_MATH_MATRIX_CHECK
102
103
104 /* Check for matrix mismatch condition */
105 if((pSrcA->numCols != pSrcB->numRows) ||
106 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
107 {
108 /* Set status as ARM_MATH_SIZE_MISMATCH */
109 status = ARM_MATH_SIZE_MISMATCH;
110 }
111 else
112 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
113
114 {
115 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
116 /* row loop */
117 do
118 {
119 /* Output pointer is set to starting address of the row being processed */
120 px = pOut + i;
121
122 /* For every row wise process, the column loop counter is to be initiated */
123 col = numColsB;
124
125 /* For every row wise process, the pIn2 pointer is set
126 ** to the starting address of the pSrcB data */
127 pIn2 = pSrcB->pData;
128
129 j = 0u;
130
131 /* column loop */
132 do
133 {
134 /* Set the variable sum, that acts as accumulator, to zero */
135 sum = 0;
136
137 /* Initiate the pointer pIn1 to point to the starting address of pInA */
138 pIn1 = pInA;
139
140 /* Apply loop unrolling and compute 4 MACs simultaneously. */
141 colCnt = numColsA >> 2;
142
143
144 /* matrix multiplication */
145 while(colCnt > 0u)
146 {
147 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
148 /* Perform the multiply-accumulates */
149 b0 = *pIn2;
150 pIn2 += numColsB;
151
152 a0 = *pIn1++;
153 a1 = *pIn1++;
154
155 b1 = *pIn2;
156 pIn2 += numColsB;
157 b2 = *pIn2;
158 pIn2 += numColsB;
159
160 sum += (q63_t) a0 *b0;
161 sum += (q63_t) a1 *b1;
162
163 a2 = *pIn1++;
164 a3 = *pIn1++;
165
166 b3 = *pIn2;
167 pIn2 += numColsB;
168
169 sum += (q63_t) a2 *b2;
170 sum += (q63_t) a3 *b3;
171
172 /* Decrement the loop counter */
173 colCnt--;
174 }
175
176 /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here.
177 ** No loop unrolling is used. */
178 colCnt = numColsA % 0x4u;
179
180 while(colCnt > 0u)
181 {
182 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
183 /* Perform the multiply-accumulates */
184 sum += (q63_t) * pIn1++ * *pIn2;
185 pIn2 += numColsB;
186
187 /* Decrement the loop counter */
188 colCnt--;
189 }
190
191 /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
192 *px++ = (q31_t) (sum >> 31);
193
194 /* Update the pointer pIn2 to point to the starting address of the next column */
195 j++;
196 pIn2 = (pSrcB->pData) + j;
197
198 /* Decrement the column loop counter */
199 col--;
200
201 } while(col > 0u);
202
203 #else
204
205 /* Run the below code for Cortex-M0 */
206
207 q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
208 uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
209 arm_status status; /* status of matrix multiplication */
210
211
212 #ifdef ARM_MATH_MATRIX_CHECK
213
214 /* Check for matrix mismatch condition */
215 if((pSrcA->numCols != pSrcB->numRows) ||
216 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
217 {
218 /* Set status as ARM_MATH_SIZE_MISMATCH */
219 status = ARM_MATH_SIZE_MISMATCH;
220 }
221 else
222 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */
223
224 {
225 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
226 /* row loop */
227 do
228 {
229 /* Output pointer is set to starting address of the row being processed */
230 px = pOut + i;
231
232 /* For every row wise process, the column loop counter is to be initiated */
233 col = numColsB;
234
235 /* For every row wise process, the pIn2 pointer is set
236 ** to the starting address of the pSrcB data */
237 pIn2 = pSrcB->pData;
238
239 /* column loop */
240 do
241 {
242 /* Set the variable sum, that acts as accumulator, to zero */
243 sum = 0;
244
245 /* Initiate the pointer pIn1 to point to the starting address of pInA */
246 pIn1 = pInA;
247
248 /* Matrix A columns number of MAC operations are to be performed */
249 colCnt = numColsA;
250
251 /* matrix multiplication */
252 while(colCnt > 0u)
253 {
254 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
255 /* Perform the multiply-accumulates */
256 sum += (q63_t) * pIn1++ * *pIn2;
257 pIn2 += numColsB;
258
259 /* Decrement the loop counter */
260 colCnt--;
261 }
262
263 /* Convert the result from 2.62 to 1.31 format and store in destination buffer */
264 *px++ = (q31_t) (sum >> 31);
265
266 /* Decrement the column loop counter */
267 col--;
268
269 /* Update the pointer pIn2 to point to the starting address of the next column */
270 pIn2 = pInB + (numColsB - col);
271
272 } while(col > 0u);
273
274 #endif
275
276 /* Update the pointer pInA to point to the starting address of the next row */
277 i = i + numColsB;
278 pInA = pInA + numColsA;
279
280 /* Decrement the row loop counter */
281 row--;
282
283 } while(row > 0u);
284
285 /* set status as ARM_MATH_SUCCESS */
286 status = ARM_MATH_SUCCESS;
287 }
288 /* Return to application */
289 return (status);
290 }
291
292 /**
293 * @} end of MatrixMult group
294 */
Imprint / Impressum