]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/dsp/cmsis_dsp/TransformFunctions/arm_cfft_radix4_q15.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / dsp / cmsis_dsp / TransformFunctions / arm_cfft_radix4_q15.c
1 /* ----------------------------------------------------------------------
2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
3 *
4 * $Date: 17. January 2013
5 * $Revision: V1.4.1
6 *
7 * Project: CMSIS DSP Library
8 * Title: arm_cfft_radix4_q15.c
9 *
10 * Description: This file has function definition of Radix-4 FFT & IFFT function and
11 * In-place bit reversal using bit reversal table
12 *
13 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * - Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * - Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in
22 * the documentation and/or other materials provided with the
23 * distribution.
24 * - Neither the name of ARM LIMITED nor the names of its contributors
25 * may be used to endorse or promote products derived from this
26 * software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
31 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
32 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
33 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
34 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
35 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
36 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
38 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 * POSSIBILITY OF SUCH DAMAGE.
40 * -------------------------------------------------------------------- */
41
42 #include "arm_math.h"
43
44
45 void arm_radix4_butterfly_q15(
46 q15_t * pSrc16,
47 uint32_t fftLen,
48 q15_t * pCoef16,
49 uint32_t twidCoefModifier);
50
51 void arm_radix4_butterfly_inverse_q15(
52 q15_t * pSrc16,
53 uint32_t fftLen,
54 q15_t * pCoef16,
55 uint32_t twidCoefModifier);
56
57 void arm_bitreversal_q15(
58 q15_t * pSrc,
59 uint32_t fftLen,
60 uint16_t bitRevFactor,
61 uint16_t * pBitRevTab);
62
63 /**
64 * @ingroup groupTransforms
65 */
66
67 /**
68 * @addtogroup ComplexFFT
69 * @{
70 */
71
72
73 /**
74 * @details
75 * @brief Processing function for the Q15 CFFT/CIFFT.
76 * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure.
77 * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
78 * @return none.
79 *
80 * \par Input and output formats:
81 * \par
82 * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
83 * Hence the output format is different for different FFT sizes.
84 * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT:
85 * \par
86 * \image html CFFTQ15.gif "Input and Output Formats for Q15 CFFT"
87 * \image html CIFFTQ15.gif "Input and Output Formats for Q15 CIFFT"
88 */
89
90 void arm_cfft_radix4_q15(
91 const arm_cfft_radix4_instance_q15 * S,
92 q15_t * pSrc)
93 {
94 if(S->ifftFlag == 1u)
95 {
96 /* Complex IFFT radix-4 */
97 arm_radix4_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle,
98 S->twidCoefModifier);
99 }
100 else
101 {
102 /* Complex FFT radix-4 */
103 arm_radix4_butterfly_q15(pSrc, S->fftLen, S->pTwiddle,
104 S->twidCoefModifier);
105 }
106
107 if(S->bitReverseFlag == 1u)
108 {
109 /* Bit Reversal */
110 arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
111 }
112
113 }
114
115 /**
116 * @} end of ComplexFFT group
117 */
118
119 /*
120 * Radix-4 FFT algorithm used is :
121 *
122 * Input real and imaginary data:
123 * x(n) = xa + j * ya
124 * x(n+N/4 ) = xb + j * yb
125 * x(n+N/2 ) = xc + j * yc
126 * x(n+3N 4) = xd + j * yd
127 *
128 *
129 * Output real and imaginary data:
130 * x(4r) = xa'+ j * ya'
131 * x(4r+1) = xb'+ j * yb'
132 * x(4r+2) = xc'+ j * yc'
133 * x(4r+3) = xd'+ j * yd'
134 *
135 *
136 * Twiddle factors for radix-4 FFT:
137 * Wn = co1 + j * (- si1)
138 * W2n = co2 + j * (- si2)
139 * W3n = co3 + j * (- si3)
140
141 * The real and imaginary output values for the radix-4 butterfly are
142 * xa' = xa + xb + xc + xd
143 * ya' = ya + yb + yc + yd
144 * xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1)
145 * yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1)
146 * xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2)
147 * yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2)
148 * xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3)
149 * yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3)
150 *
151 */
152
153 /**
154 * @brief Core function for the Q15 CFFT butterfly process.
155 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
156 * @param[in] fftLen length of the FFT.
157 * @param[in] *pCoef16 points to twiddle coefficient buffer.
158 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
159 * @return none.
160 */
161
162 void arm_radix4_butterfly_q15(
163 q15_t * pSrc16,
164 uint32_t fftLen,
165 q15_t * pCoef16,
166 uint32_t twidCoefModifier)
167 {
168
169 #ifndef ARM_MATH_CM0_FAMILY
170
171 /* Run the below code for Cortex-M4 and Cortex-M3 */
172
173 q31_t R, S, T, U;
174 q31_t C1, C2, C3, out1, out2;
175 uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
176 q15_t in;
177
178 q15_t *ptr1;
179
180
181
182 q31_t xaya, xbyb, xcyc, xdyd;
183
184 /* Total process is divided into three stages */
185
186 /* process first stage, middle stages, & last stage */
187
188 /* Initializations for the first stage */
189 n2 = fftLen;
190 n1 = n2;
191
192 /* n2 = fftLen/4 */
193 n2 >>= 2u;
194
195 /* Index for twiddle coefficient */
196 ic = 0u;
197
198 /* Index for input read and output write */
199 i0 = 0u;
200 j = n2;
201
202 /* Input is in 1.15(q15) format */
203
204 /* start of first stage process */
205 do
206 {
207 /* Butterfly implementation */
208
209 /* index calculation for the input as, */
210 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
211 i1 = i0 + n2;
212 i2 = i1 + n2;
213 i3 = i2 + n2;
214
215 /* Reading i0, i0+fftLen/2 inputs */
216 /* Read ya (real), xa(imag) input */
217 T = _SIMD32_OFFSET(pSrc16 + (2u * i0));
218 in = ((int16_t) (T & 0xFFFF)) >> 2;
219 T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
220
221 /* Read yc (real), xc(imag) input */
222 S = _SIMD32_OFFSET(pSrc16 + (2u * i2));
223 in = ((int16_t) (S & 0xFFFF)) >> 2;
224 S = ((S >> 2) & 0xFFFF0000) | (in & 0xFFFF);
225
226 /* R = packed((ya + yc), (xa + xc) ) */
227 R = __QADD16(T, S);
228
229 /* S = packed((ya - yc), (xa - xc) ) */
230 S = __QSUB16(T, S);
231
232 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
233 /* Read yb (real), xb(imag) input */
234 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
235 in = ((int16_t) (T & 0xFFFF)) >> 2;
236 T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
237
238 /* Read yd (real), xd(imag) input */
239 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
240 in = ((int16_t) (U & 0xFFFF)) >> 2;
241 U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF);
242
243 /* T = packed((yb + yd), (xb + xd) ) */
244 T = __QADD16(T, U);
245
246 /* writing the butterfly processed i0 sample */
247 /* xa' = xa + xb + xc + xd */
248 /* ya' = ya + yb + yc + yd */
249 _SIMD32_OFFSET(pSrc16 + (2u * i0)) = __SHADD16(R, T);
250
251 /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
252 R = __QSUB16(R, T);
253
254 /* co2 & si2 are read from SIMD Coefficient pointer */
255 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
256
257 #ifndef ARM_MATH_BIG_ENDIAN
258
259 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
260 out1 = __SMUAD(C2, R) >> 16u;
261 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
262 out2 = __SMUSDX(C2, R);
263
264 #else
265
266 /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
267 out1 = __SMUSDX(R, C2) >> 16u;
268 /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
269 out2 = __SMUAD(C2, R);
270
271 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
272
273 /* Reading i0+fftLen/4 */
274 /* T = packed(yb, xb) */
275 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
276 in = ((int16_t) (T & 0xFFFF)) >> 2;
277 T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
278
279 /* writing the butterfly processed i0 + fftLen/4 sample */
280 /* writing output(xc', yc') in little endian format */
281 _SIMD32_OFFSET(pSrc16 + (2u * i1)) =
282 (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
283
284 /* Butterfly calculations */
285 /* U = packed(yd, xd) */
286 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
287 in = ((int16_t) (U & 0xFFFF)) >> 2;
288 U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF);
289
290 /* T = packed(yb-yd, xb-xd) */
291 T = __QSUB16(T, U);
292
293 #ifndef ARM_MATH_BIG_ENDIAN
294
295 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
296 R = __QASX(S, T);
297 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
298 S = __QSAX(S, T);
299
300 #else
301
302 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
303 R = __QSAX(S, T);
304 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
305 S = __QASX(S, T);
306
307 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
308
309 /* co1 & si1 are read from SIMD Coefficient pointer */
310 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
311 /* Butterfly process for the i0+fftLen/2 sample */
312
313 #ifndef ARM_MATH_BIG_ENDIAN
314
315 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
316 out1 = __SMUAD(C1, S) >> 16u;
317 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
318 out2 = __SMUSDX(C1, S);
319
320 #else
321
322 /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
323 out1 = __SMUSDX(S, C1) >> 16u;
324 /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
325 out2 = __SMUAD(C1, S);
326
327 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
328
329 /* writing output(xb', yb') in little endian format */
330 _SIMD32_OFFSET(pSrc16 + (2u * i2)) =
331 ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);
332
333
334 /* co3 & si3 are read from SIMD Coefficient pointer */
335 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
336 /* Butterfly process for the i0+3fftLen/4 sample */
337
338 #ifndef ARM_MATH_BIG_ENDIAN
339
340 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
341 out1 = __SMUAD(C3, R) >> 16u;
342 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
343 out2 = __SMUSDX(C3, R);
344
345 #else
346
347 /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
348 out1 = __SMUSDX(R, C3) >> 16u;
349 /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
350 out2 = __SMUAD(C3, R);
351
352 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
353
354 /* writing output(xd', yd') in little endian format */
355 _SIMD32_OFFSET(pSrc16 + (2u * i3)) =
356 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
357
358 /* Twiddle coefficients index modifier */
359 ic = ic + twidCoefModifier;
360
361 /* Updating input index */
362 i0 = i0 + 1u;
363
364 } while(--j);
365 /* data is in 4.11(q11) format */
366
367 /* end of first stage process */
368
369
370 /* start of middle stage process */
371
372 /* Twiddle coefficients index modifier */
373 twidCoefModifier <<= 2u;
374
375 /* Calculation of Middle stage */
376 for (k = fftLen / 4u; k > 4u; k >>= 2u)
377 {
378 /* Initializations for the middle stage */
379 n1 = n2;
380 n2 >>= 2u;
381 ic = 0u;
382
383 for (j = 0u; j <= (n2 - 1u); j++)
384 {
385 /* index calculation for the coefficients */
386 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
387 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
388 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
389
390 /* Twiddle coefficients index modifier */
391 ic = ic + twidCoefModifier;
392
393 /* Butterfly implementation */
394 for (i0 = j; i0 < fftLen; i0 += n1)
395 {
396 /* index calculation for the input as, */
397 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
398 i1 = i0 + n2;
399 i2 = i1 + n2;
400 i3 = i2 + n2;
401
402 /* Reading i0, i0+fftLen/2 inputs */
403 /* Read ya (real), xa(imag) input */
404 T = _SIMD32_OFFSET(pSrc16 + (2u * i0));
405
406 /* Read yc (real), xc(imag) input */
407 S = _SIMD32_OFFSET(pSrc16 + (2u * i2));
408
409 /* R = packed( (ya + yc), (xa + xc)) */
410 R = __QADD16(T, S);
411
412 /* S = packed((ya - yc), (xa - xc)) */
413 S = __QSUB16(T, S);
414
415 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
416 /* Read yb (real), xb(imag) input */
417 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
418
419 /* Read yd (real), xd(imag) input */
420 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
421
422 /* T = packed( (yb + yd), (xb + xd)) */
423 T = __QADD16(T, U);
424
425 /* writing the butterfly processed i0 sample */
426
427 /* xa' = xa + xb + xc + xd */
428 /* ya' = ya + yb + yc + yd */
429 out1 = __SHADD16(R, T);
430 in = ((int16_t) (out1 & 0xFFFF)) >> 1;
431 out1 = ((out1 >> 1) & 0xFFFF0000) | (in & 0xFFFF);
432 _SIMD32_OFFSET(pSrc16 + (2u * i0)) = out1;
433
434 /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
435 R = __SHSUB16(R, T);
436
437 #ifndef ARM_MATH_BIG_ENDIAN
438
439 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
440 out1 = __SMUAD(C2, R) >> 16u;
441
442 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
443 out2 = __SMUSDX(C2, R);
444
445 #else
446
447 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
448 out1 = __SMUSDX(R, C2) >> 16u;
449
450 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
451 out2 = __SMUAD(C2, R);
452
453 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
454
455 /* Reading i0+3fftLen/4 */
456 /* Read yb (real), xb(imag) input */
457 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
458
459 /* writing the butterfly processed i0 + fftLen/4 sample */
460 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
461 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
462 _SIMD32_OFFSET(pSrc16 + (2u * i1)) =
463 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
464
465 /* Butterfly calculations */
466
467 /* Read yd (real), xd(imag) input */
468 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
469
470 /* T = packed(yb-yd, xb-xd) */
471 T = __QSUB16(T, U);
472
473 #ifndef ARM_MATH_BIG_ENDIAN
474
475 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
476 R = __SHASX(S, T);
477
478 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
479 S = __SHSAX(S, T);
480
481
482 /* Butterfly process for the i0+fftLen/2 sample */
483 out1 = __SMUAD(C1, S) >> 16u;
484 out2 = __SMUSDX(C1, S);
485
486 #else
487
488 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
489 R = __SHSAX(S, T);
490
491 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
492 S = __SHASX(S, T);
493
494
495 /* Butterfly process for the i0+fftLen/2 sample */
496 out1 = __SMUSDX(S, C1) >> 16u;
497 out2 = __SMUAD(C1, S);
498
499 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
500
501 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
502 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
503 _SIMD32_OFFSET(pSrc16 + (2u * i2)) =
504 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
505
506 /* Butterfly process for the i0+3fftLen/4 sample */
507
508 #ifndef ARM_MATH_BIG_ENDIAN
509
510 out1 = __SMUAD(C3, R) >> 16u;
511 out2 = __SMUSDX(C3, R);
512
513 #else
514
515 out1 = __SMUSDX(R, C3) >> 16u;
516 out2 = __SMUAD(C3, R);
517
518 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
519
520 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
521 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
522 _SIMD32_OFFSET(pSrc16 + (2u * i3)) =
523 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
524 }
525 }
526 /* Twiddle coefficients index modifier */
527 twidCoefModifier <<= 2u;
528 }
529 /* end of middle stage process */
530
531
532 /* data is in 10.6(q6) format for the 1024 point */
533 /* data is in 8.8(q8) format for the 256 point */
534 /* data is in 6.10(q10) format for the 64 point */
535 /* data is in 4.12(q12) format for the 16 point */
536
537 /* Initializations for the last stage */
538 j = fftLen >> 2;
539
540 ptr1 = &pSrc16[0];
541
542 /* start of last stage process */
543
544 /* Butterfly implementation */
545 do
546 {
547 /* Read xa (real), ya(imag) input */
548 xaya = *__SIMD32(ptr1)++;
549
550 /* Read xb (real), yb(imag) input */
551 xbyb = *__SIMD32(ptr1)++;
552
553 /* Read xc (real), yc(imag) input */
554 xcyc = *__SIMD32(ptr1)++;
555
556 /* Read xd (real), yd(imag) input */
557 xdyd = *__SIMD32(ptr1)++;
558
559 /* R = packed((ya + yc), (xa + xc)) */
560 R = __QADD16(xaya, xcyc);
561
562 /* T = packed((yb + yd), (xb + xd)) */
563 T = __QADD16(xbyb, xdyd);
564
565 /* pointer updation for writing */
566 ptr1 = ptr1 - 8u;
567
568
569 /* xa' = xa + xb + xc + xd */
570 /* ya' = ya + yb + yc + yd */
571 *__SIMD32(ptr1)++ = __SHADD16(R, T);
572
573 /* T = packed((yb + yd), (xb + xd)) */
574 T = __QADD16(xbyb, xdyd);
575
576 /* xc' = (xa-xb+xc-xd) */
577 /* yc' = (ya-yb+yc-yd) */
578 *__SIMD32(ptr1)++ = __SHSUB16(R, T);
579
580 /* S = packed((ya - yc), (xa - xc)) */
581 S = __QSUB16(xaya, xcyc);
582
583 /* Read yd (real), xd(imag) input */
584 /* T = packed( (yb - yd), (xb - xd)) */
585 U = __QSUB16(xbyb, xdyd);
586
587 #ifndef ARM_MATH_BIG_ENDIAN
588
589 /* xb' = (xa+yb-xc-yd) */
590 /* yb' = (ya-xb-yc+xd) */
591 *__SIMD32(ptr1)++ = __SHSAX(S, U);
592
593
594 /* xd' = (xa-yb-xc+yd) */
595 /* yd' = (ya+xb-yc-xd) */
596 *__SIMD32(ptr1)++ = __SHASX(S, U);
597
598 #else
599
600 /* xb' = (xa+yb-xc-yd) */
601 /* yb' = (ya-xb-yc+xd) */
602 *__SIMD32(ptr1)++ = __SHASX(S, U);
603
604
605 /* xd' = (xa-yb-xc+yd) */
606 /* yd' = (ya+xb-yc-xd) */
607 *__SIMD32(ptr1)++ = __SHSAX(S, U);
608
609 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
610
611 } while(--j);
612
613 /* end of last stage process */
614
615 /* output is in 11.5(q5) format for the 1024 point */
616 /* output is in 9.7(q7) format for the 256 point */
617 /* output is in 7.9(q9) format for the 64 point */
618 /* output is in 5.11(q11) format for the 16 point */
619
620
621 #else
622
623 /* Run the below code for Cortex-M0 */
624
625 q15_t R0, R1, S0, S1, T0, T1, U0, U1;
626 q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2;
627 uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
628
629 /* Total process is divided into three stages */
630
631 /* process first stage, middle stages, & last stage */
632
633 /* Initializations for the first stage */
634 n2 = fftLen;
635 n1 = n2;
636
637 /* n2 = fftLen/4 */
638 n2 >>= 2u;
639
640 /* Index for twiddle coefficient */
641 ic = 0u;
642
643 /* Index for input read and output write */
644 i0 = 0u;
645 j = n2;
646
647 /* Input is in 1.15(q15) format */
648
649 /* start of first stage process */
650 do
651 {
652 /* Butterfly implementation */
653
654 /* index calculation for the input as, */
655 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
656 i1 = i0 + n2;
657 i2 = i1 + n2;
658 i3 = i2 + n2;
659
660 /* Reading i0, i0+fftLen/2 inputs */
661
662 /* input is down scale by 4 to avoid overflow */
663 /* Read ya (real), xa(imag) input */
664 T0 = pSrc16[i0 * 2u] >> 2u;
665 T1 = pSrc16[(i0 * 2u) + 1u] >> 2u;
666
667 /* input is down scale by 4 to avoid overflow */
668 /* Read yc (real), xc(imag) input */
669 S0 = pSrc16[i2 * 2u] >> 2u;
670 S1 = pSrc16[(i2 * 2u) + 1u] >> 2u;
671
672 /* R0 = (ya + yc) */
673 R0 = __SSAT(T0 + S0, 16u);
674 /* R1 = (xa + xc) */
675 R1 = __SSAT(T1 + S1, 16u);
676
677 /* S0 = (ya - yc) */
678 S0 = __SSAT(T0 - S0, 16);
679 /* S1 = (xa - xc) */
680 S1 = __SSAT(T1 - S1, 16);
681
682 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
683 /* input is down scale by 4 to avoid overflow */
684 /* Read yb (real), xb(imag) input */
685 T0 = pSrc16[i1 * 2u] >> 2u;
686 T1 = pSrc16[(i1 * 2u) + 1u] >> 2u;
687
688 /* input is down scale by 4 to avoid overflow */
689 /* Read yd (real), xd(imag) input */
690 U0 = pSrc16[i3 * 2u] >> 2u;
691 U1 = pSrc16[(i3 * 2u) + 1] >> 2u;
692
693 /* T0 = (yb + yd) */
694 T0 = __SSAT(T0 + U0, 16u);
695 /* T1 = (xb + xd) */
696 T1 = __SSAT(T1 + U1, 16u);
697
698 /* writing the butterfly processed i0 sample */
699 /* ya' = ya + yb + yc + yd */
700 /* xa' = xa + xb + xc + xd */
701 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
702 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
703
704 /* R0 = (ya + yc) - (yb + yd) */
705 /* R1 = (xa + xc) - (xb + xd) */
706 R0 = __SSAT(R0 - T0, 16u);
707 R1 = __SSAT(R1 - T1, 16u);
708
709 /* co2 & si2 are read from Coefficient pointer */
710 Co2 = pCoef16[2u * ic * 2u];
711 Si2 = pCoef16[(2u * ic * 2u) + 1];
712
713 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
714 out1 = (short) ((Co2 * R0 + Si2 * R1) >> 16u);
715 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
716 out2 = (short) ((-Si2 * R0 + Co2 * R1) >> 16u);
717
718 /* Reading i0+fftLen/4 */
719 /* input is down scale by 4 to avoid overflow */
720 /* T0 = yb, T1 = xb */
721 T0 = pSrc16[i1 * 2u] >> 2;
722 T1 = pSrc16[(i1 * 2u) + 1] >> 2;
723
724 /* writing the butterfly processed i0 + fftLen/4 sample */
725 /* writing output(xc', yc') in little endian format */
726 pSrc16[i1 * 2u] = out1;
727 pSrc16[(i1 * 2u) + 1] = out2;
728
729 /* Butterfly calculations */
730 /* input is down scale by 4 to avoid overflow */
731 /* U0 = yd, U1 = xd */
732 U0 = pSrc16[i3 * 2u] >> 2;
733 U1 = pSrc16[(i3 * 2u) + 1] >> 2;
734 /* T0 = yb-yd */
735 T0 = __SSAT(T0 - U0, 16);
736 /* T1 = xb-xd */
737 T1 = __SSAT(T1 - U1, 16);
738
739 /* R1 = (ya-yc) + (xb- xd), R0 = (xa-xc) - (yb-yd)) */
740 R0 = (short) __SSAT((q31_t) (S0 - T1), 16);
741 R1 = (short) __SSAT((q31_t) (S1 + T0), 16);
742
743 /* S1 = (ya-yc) - (xb- xd), S0 = (xa-xc) + (yb-yd)) */
744 S0 = (short) __SSAT(((q31_t) S0 + T1), 16u);
745 S1 = (short) __SSAT(((q31_t) S1 - T0), 16u);
746
747 /* co1 & si1 are read from Coefficient pointer */
748 Co1 = pCoef16[ic * 2u];
749 Si1 = pCoef16[(ic * 2u) + 1];
750 /* Butterfly process for the i0+fftLen/2 sample */
751 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
752 out1 = (short) ((Si1 * S1 + Co1 * S0) >> 16);
753 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
754 out2 = (short) ((-Si1 * S0 + Co1 * S1) >> 16);
755
756 /* writing output(xb', yb') in little endian format */
757 pSrc16[i2 * 2u] = out1;
758 pSrc16[(i2 * 2u) + 1] = out2;
759
760 /* Co3 & si3 are read from Coefficient pointer */
761 Co3 = pCoef16[3u * (ic * 2u)];
762 Si3 = pCoef16[(3u * (ic * 2u)) + 1];
763 /* Butterfly process for the i0+3fftLen/4 sample */
764 /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */
765 out1 = (short) ((Si3 * R1 + Co3 * R0) >> 16u);
766 /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */
767 out2 = (short) ((-Si3 * R0 + Co3 * R1) >> 16u);
768 /* writing output(xd', yd') in little endian format */
769 pSrc16[i3 * 2u] = out1;
770 pSrc16[(i3 * 2u) + 1] = out2;
771
772 /* Twiddle coefficients index modifier */
773 ic = ic + twidCoefModifier;
774
775 /* Updating input index */
776 i0 = i0 + 1u;
777
778 } while(--j);
779 /* data is in 4.11(q11) format */
780
781 /* end of first stage process */
782
783
784 /* start of middle stage process */
785
786 /* Twiddle coefficients index modifier */
787 twidCoefModifier <<= 2u;
788
789 /* Calculation of Middle stage */
790 for (k = fftLen / 4u; k > 4u; k >>= 2u)
791 {
792 /* Initializations for the middle stage */
793 n1 = n2;
794 n2 >>= 2u;
795 ic = 0u;
796
797 for (j = 0u; j <= (n2 - 1u); j++)
798 {
799 /* index calculation for the coefficients */
800 Co1 = pCoef16[ic * 2u];
801 Si1 = pCoef16[(ic * 2u) + 1u];
802 Co2 = pCoef16[2u * (ic * 2u)];
803 Si2 = pCoef16[(2u * (ic * 2u)) + 1u];
804 Co3 = pCoef16[3u * (ic * 2u)];
805 Si3 = pCoef16[(3u * (ic * 2u)) + 1u];
806
807 /* Twiddle coefficients index modifier */
808 ic = ic + twidCoefModifier;
809
810 /* Butterfly implementation */
811 for (i0 = j; i0 < fftLen; i0 += n1)
812 {
813 /* index calculation for the input as, */
814 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
815 i1 = i0 + n2;
816 i2 = i1 + n2;
817 i3 = i2 + n2;
818
819 /* Reading i0, i0+fftLen/2 inputs */
820 /* Read ya (real), xa(imag) input */
821 T0 = pSrc16[i0 * 2u];
822 T1 = pSrc16[(i0 * 2u) + 1u];
823
824 /* Read yc (real), xc(imag) input */
825 S0 = pSrc16[i2 * 2u];
826 S1 = pSrc16[(i2 * 2u) + 1u];
827
828 /* R0 = (ya + yc), R1 = (xa + xc) */
829 R0 = __SSAT(T0 + S0, 16);
830 R1 = __SSAT(T1 + S1, 16);
831
832 /* S0 = (ya - yc), S1 =(xa - xc) */
833 S0 = __SSAT(T0 - S0, 16);
834 S1 = __SSAT(T1 - S1, 16);
835
836 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
837 /* Read yb (real), xb(imag) input */
838 T0 = pSrc16[i1 * 2u];
839 T1 = pSrc16[(i1 * 2u) + 1u];
840
841 /* Read yd (real), xd(imag) input */
842 U0 = pSrc16[i3 * 2u];
843 U1 = pSrc16[(i3 * 2u) + 1u];
844
845
846 /* T0 = (yb + yd), T1 = (xb + xd) */
847 T0 = __SSAT(T0 + U0, 16);
848 T1 = __SSAT(T1 + U1, 16);
849
850 /* writing the butterfly processed i0 sample */
851
852 /* xa' = xa + xb + xc + xd */
853 /* ya' = ya + yb + yc + yd */
854 out1 = ((R0 >> 1u) + (T0 >> 1u)) >> 1u;
855 out2 = ((R1 >> 1u) + (T1 >> 1u)) >> 1u;
856
857 pSrc16[i0 * 2u] = out1;
858 pSrc16[(2u * i0) + 1u] = out2;
859
860 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
861 R0 = (R0 >> 1u) - (T0 >> 1u);
862 R1 = (R1 >> 1u) - (T1 >> 1u);
863
864 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
865 out1 = (short) ((Co2 * R0 + Si2 * R1) >> 16u);
866
867 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
868 out2 = (short) ((-Si2 * R0 + Co2 * R1) >> 16u);
869
870 /* Reading i0+3fftLen/4 */
871 /* Read yb (real), xb(imag) input */
872 T0 = pSrc16[i1 * 2u];
873 T1 = pSrc16[(i1 * 2u) + 1u];
874
875 /* writing the butterfly processed i0 + fftLen/4 sample */
876 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
877 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
878 pSrc16[i1 * 2u] = out1;
879 pSrc16[(i1 * 2u) + 1u] = out2;
880
881 /* Butterfly calculations */
882
883 /* Read yd (real), xd(imag) input */
884 U0 = pSrc16[i3 * 2u];
885 U1 = pSrc16[(i3 * 2u) + 1u];
886
887 /* T0 = yb-yd, T1 = xb-xd */
888 T0 = __SSAT(T0 - U0, 16);
889 T1 = __SSAT(T1 - U1, 16);
890
891 /* R0 = (ya-yc) + (xb- xd), R1 = (xa-xc) - (yb-yd)) */
892 R0 = (S0 >> 1u) - (T1 >> 1u);
893 R1 = (S1 >> 1u) + (T0 >> 1u);
894
895 /* S0 = (ya-yc) - (xb- xd), S1 = (xa-xc) + (yb-yd)) */
896 S0 = (S0 >> 1u) + (T1 >> 1u);
897 S1 = (S1 >> 1u) - (T0 >> 1u);
898
899 /* Butterfly process for the i0+fftLen/2 sample */
900 out1 = (short) ((Co1 * S0 + Si1 * S1) >> 16u);
901
902 out2 = (short) ((-Si1 * S0 + Co1 * S1) >> 16u);
903
904 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
905 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
906 pSrc16[i2 * 2u] = out1;
907 pSrc16[(i2 * 2u) + 1u] = out2;
908
909 /* Butterfly process for the i0+3fftLen/4 sample */
910 out1 = (short) ((Si3 * R1 + Co3 * R0) >> 16u);
911
912 out2 = (short) ((-Si3 * R0 + Co3 * R1) >> 16u);
913 /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */
914 /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */
915 pSrc16[i3 * 2u] = out1;
916 pSrc16[(i3 * 2u) + 1u] = out2;
917 }
918 }
919 /* Twiddle coefficients index modifier */
920 twidCoefModifier <<= 2u;
921 }
922 /* end of middle stage process */
923
924
925 /* data is in 10.6(q6) format for the 1024 point */
926 /* data is in 8.8(q8) format for the 256 point */
927 /* data is in 6.10(q10) format for the 64 point */
928 /* data is in 4.12(q12) format for the 16 point */
929
930 /* Initializations for the last stage */
931 n1 = n2;
932 n2 >>= 2u;
933
934 /* start of last stage process */
935
936 /* Butterfly implementation */
937 for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1)
938 {
939 /* index calculation for the input as, */
940 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
941 i1 = i0 + n2;
942 i2 = i1 + n2;
943 i3 = i2 + n2;
944
945 /* Reading i0, i0+fftLen/2 inputs */
946 /* Read ya (real), xa(imag) input */
947 T0 = pSrc16[i0 * 2u];
948 T1 = pSrc16[(i0 * 2u) + 1u];
949
950 /* Read yc (real), xc(imag) input */
951 S0 = pSrc16[i2 * 2u];
952 S1 = pSrc16[(i2 * 2u) + 1u];
953
954 /* R0 = (ya + yc), R1 = (xa + xc) */
955 R0 = __SSAT(T0 + S0, 16u);
956 R1 = __SSAT(T1 + S1, 16u);
957
958 /* S0 = (ya - yc), S1 = (xa - xc) */
959 S0 = __SSAT(T0 - S0, 16u);
960 S1 = __SSAT(T1 - S1, 16u);
961
962 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
963 /* Read yb (real), xb(imag) input */
964 T0 = pSrc16[i1 * 2u];
965 T1 = pSrc16[(i1 * 2u) + 1u];
966 /* Read yd (real), xd(imag) input */
967 U0 = pSrc16[i3 * 2u];
968 U1 = pSrc16[(i3 * 2u) + 1u];
969
970 /* T0 = (yb + yd), T1 = (xb + xd)) */
971 T0 = __SSAT(T0 + U0, 16u);
972 T1 = __SSAT(T1 + U1, 16u);
973
974 /* writing the butterfly processed i0 sample */
975 /* xa' = xa + xb + xc + xd */
976 /* ya' = ya + yb + yc + yd */
977 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
978 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
979
980 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
981 R0 = (R0 >> 1u) - (T0 >> 1u);
982 R1 = (R1 >> 1u) - (T1 >> 1u);
983 /* Read yb (real), xb(imag) input */
984 T0 = pSrc16[i1 * 2u];
985 T1 = pSrc16[(i1 * 2u) + 1u];
986
987 /* writing the butterfly processed i0 + fftLen/4 sample */
988 /* xc' = (xa-xb+xc-xd) */
989 /* yc' = (ya-yb+yc-yd) */
990 pSrc16[i1 * 2u] = R0;
991 pSrc16[(i1 * 2u) + 1u] = R1;
992
993 /* Read yd (real), xd(imag) input */
994 U0 = pSrc16[i3 * 2u];
995 U1 = pSrc16[(i3 * 2u) + 1u];
996 /* T0 = (yb - yd), T1 = (xb - xd) */
997 T0 = __SSAT(T0 - U0, 16u);
998 T1 = __SSAT(T1 - U1, 16u);
999
1000 /* writing the butterfly processed i0 + fftLen/2 sample */
1001 /* xb' = (xa+yb-xc-yd) */
1002 /* yb' = (ya-xb-yc+xd) */
1003 pSrc16[i2 * 2u] = (S0 >> 1u) + (T1 >> 1u);
1004 pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u);
1005
1006 /* writing the butterfly processed i0 + 3fftLen/4 sample */
1007 /* xd' = (xa-yb-xc+yd) */
1008 /* yd' = (ya+xb-yc-xd) */
1009 pSrc16[i3 * 2u] = (S0 >> 1u) - (T1 >> 1u);
1010 pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u);
1011
1012 }
1013
1014 /* end of last stage process */
1015
1016 /* output is in 11.5(q5) format for the 1024 point */
1017 /* output is in 9.7(q7) format for the 256 point */
1018 /* output is in 7.9(q9) format for the 64 point */
1019 /* output is in 5.11(q11) format for the 16 point */
1020
1021 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
1022
1023 }
1024
1025
1026 /**
1027 * @brief Core function for the Q15 CIFFT butterfly process.
1028 * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
1029 * @param[in] fftLen length of the FFT.
1030 * @param[in] *pCoef16 points to twiddle coefficient buffer.
1031 * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
1032 * @return none.
1033 */
1034
1035 /*
1036 * Radix-4 IFFT algorithm used is :
1037 *
1038 * CIFFT uses same twiddle coefficients as CFFT function
1039 * x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4]
1040 *
1041 *
1042 * IFFT is implemented with following changes in equations from FFT
1043 *
1044 * Input real and imaginary data:
1045 * x(n) = xa + j * ya
1046 * x(n+N/4 ) = xb + j * yb
1047 * x(n+N/2 ) = xc + j * yc
1048 * x(n+3N 4) = xd + j * yd
1049 *
1050 *
1051 * Output real and imaginary data:
1052 * x(4r) = xa'+ j * ya'
1053 * x(4r+1) = xb'+ j * yb'
1054 * x(4r+2) = xc'+ j * yc'
1055 * x(4r+3) = xd'+ j * yd'
1056 *
1057 *
1058 * Twiddle factors for radix-4 IFFT:
1059 * Wn = co1 + j * (si1)
1060 * W2n = co2 + j * (si2)
1061 * W3n = co3 + j * (si3)
1062
1063 * The real and imaginary output values for the radix-4 butterfly are
1064 * xa' = xa + xb + xc + xd
1065 * ya' = ya + yb + yc + yd
1066 * xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1)
1067 * yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1)
1068 * xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2)
1069 * yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2)
1070 * xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3)
1071 * yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3)
1072 *
1073 */
1074
1075 void arm_radix4_butterfly_inverse_q15(
1076 q15_t * pSrc16,
1077 uint32_t fftLen,
1078 q15_t * pCoef16,
1079 uint32_t twidCoefModifier)
1080 {
1081
1082 #ifndef ARM_MATH_CM0_FAMILY
1083
1084 /* Run the below code for Cortex-M4 and Cortex-M3 */
1085
1086 q31_t R, S, T, U;
1087 q31_t C1, C2, C3, out1, out2;
1088 uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
1089 q15_t in;
1090
1091 q15_t *ptr1;
1092
1093
1094
1095 q31_t xaya, xbyb, xcyc, xdyd;
1096
1097 /* Total process is divided into three stages */
1098
1099 /* process first stage, middle stages, & last stage */
1100
1101 /* Initializations for the first stage */
1102 n2 = fftLen;
1103 n1 = n2;
1104
1105 /* n2 = fftLen/4 */
1106 n2 >>= 2u;
1107
1108 /* Index for twiddle coefficient */
1109 ic = 0u;
1110
1111 /* Index for input read and output write */
1112 i0 = 0u;
1113 j = n2;
1114
1115 /* Input is in 1.15(q15) format */
1116
1117 /* start of first stage process */
1118 do
1119 {
1120 /* Butterfly implementation */
1121
1122 /* index calculation for the input as, */
1123 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
1124 i1 = i0 + n2;
1125 i2 = i1 + n2;
1126 i3 = i2 + n2;
1127
1128 /* Reading i0, i0+fftLen/2 inputs */
1129 /* Read ya (real), xa(imag) input */
1130 T = _SIMD32_OFFSET(pSrc16 + (2u * i0));
1131 in = ((int16_t) (T & 0xFFFF)) >> 2;
1132 T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
1133
1134 /* Read yc (real), xc(imag) input */
1135 S = _SIMD32_OFFSET(pSrc16 + (2u * i2));
1136 in = ((int16_t) (S & 0xFFFF)) >> 2;
1137 S = ((S >> 2) & 0xFFFF0000) | (in & 0xFFFF);
1138
1139 /* R = packed((ya + yc), (xa + xc) ) */
1140 R = __QADD16(T, S);
1141
1142 /* S = packed((ya - yc), (xa - xc) ) */
1143 S = __QSUB16(T, S);
1144
1145 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
1146 /* Read yb (real), xb(imag) input */
1147 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
1148 in = ((int16_t) (T & 0xFFFF)) >> 2;
1149 T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
1150
1151 /* Read yd (real), xd(imag) input */
1152 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
1153 in = ((int16_t) (U & 0xFFFF)) >> 2;
1154 U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF);
1155
1156 /* T = packed((yb + yd), (xb + xd) ) */
1157 T = __QADD16(T, U);
1158
1159 /* writing the butterfly processed i0 sample */
1160 /* xa' = xa + xb + xc + xd */
1161 /* ya' = ya + yb + yc + yd */
1162 _SIMD32_OFFSET(pSrc16 + (2u * i0)) = __SHADD16(R, T);
1163
1164 /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
1165 R = __QSUB16(R, T);
1166
1167 /* co2 & si2 are read from SIMD Coefficient pointer */
1168 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
1169
1170 #ifndef ARM_MATH_BIG_ENDIAN
1171
1172 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
1173 out1 = __SMUSD(C2, R) >> 16u;
1174 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
1175 out2 = __SMUADX(C2, R);
1176
1177 #else
1178
1179 /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
1180 out1 = __SMUADX(C2, R) >> 16u;
1181 /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
1182 out2 = __SMUSD(__QSUB16(0, C2), R);
1183
1184 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1185
1186 /* Reading i0+fftLen/4 */
1187 /* T = packed(yb, xb) */
1188 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
1189 in = ((int16_t) (T & 0xFFFF)) >> 2;
1190 T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
1191
1192 /* writing the butterfly processed i0 + fftLen/4 sample */
1193 /* writing output(xc', yc') in little endian format */
1194 _SIMD32_OFFSET(pSrc16 + (2u * i1)) =
1195 (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
1196
1197 /* Butterfly calculations */
1198 /* U = packed(yd, xd) */
1199 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
1200 in = ((int16_t) (U & 0xFFFF)) >> 2;
1201 U = ((U >> 2) & 0xFFFF0000) | (in & 0xFFFF);
1202
1203 /* T = packed(yb-yd, xb-xd) */
1204 T = __QSUB16(T, U);
1205
1206 #ifndef ARM_MATH_BIG_ENDIAN
1207
1208 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
1209 R = __QSAX(S, T);
1210 /* S = packed((ya-yc) + (xb- xd), (xa-xc) - (yb-yd)) */
1211 S = __QASX(S, T);
1212
1213 #else
1214
1215 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
1216 R = __QASX(S, T);
1217 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
1218 S = __QSAX(S, T);
1219
1220 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1221
1222 /* co1 & si1 are read from SIMD Coefficient pointer */
1223 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
1224 /* Butterfly process for the i0+fftLen/2 sample */
1225
1226 #ifndef ARM_MATH_BIG_ENDIAN
1227
1228 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
1229 out1 = __SMUSD(C1, S) >> 16u;
1230 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
1231 out2 = __SMUADX(C1, S);
1232
1233 #else
1234
1235 /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
1236 out1 = __SMUADX(C1, S) >> 16u;
1237 /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
1238 out2 = __SMUSD(__QSUB16(0, C1), S);
1239
1240 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1241
1242 /* writing output(xb', yb') in little endian format */
1243 _SIMD32_OFFSET(pSrc16 + (2u * i2)) =
1244 ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);
1245
1246
1247 /* co3 & si3 are read from SIMD Coefficient pointer */
1248 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
1249 /* Butterfly process for the i0+3fftLen/4 sample */
1250
1251 #ifndef ARM_MATH_BIG_ENDIAN
1252
1253 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
1254 out1 = __SMUSD(C3, R) >> 16u;
1255 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
1256 out2 = __SMUADX(C3, R);
1257
1258 #else
1259
1260 /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
1261 out1 = __SMUADX(C3, R) >> 16u;
1262 /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
1263 out2 = __SMUSD(__QSUB16(0, C3), R);
1264
1265 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1266
1267 /* writing output(xd', yd') in little endian format */
1268 _SIMD32_OFFSET(pSrc16 + (2u * i3)) =
1269 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
1270
1271 /* Twiddle coefficients index modifier */
1272 ic = ic + twidCoefModifier;
1273
1274 /* Updating input index */
1275 i0 = i0 + 1u;
1276
1277 } while(--j);
1278 /* data is in 4.11(q11) format */
1279
1280 /* end of first stage process */
1281
1282
1283 /* start of middle stage process */
1284
1285 /* Twiddle coefficients index modifier */
1286 twidCoefModifier <<= 2u;
1287
1288 /* Calculation of Middle stage */
1289 for (k = fftLen / 4u; k > 4u; k >>= 2u)
1290 {
1291 /* Initializations for the middle stage */
1292 n1 = n2;
1293 n2 >>= 2u;
1294 ic = 0u;
1295
1296 for (j = 0u; j <= (n2 - 1u); j++)
1297 {
1298 /* index calculation for the coefficients */
1299 C1 = _SIMD32_OFFSET(pCoef16 + (2u * ic));
1300 C2 = _SIMD32_OFFSET(pCoef16 + (4u * ic));
1301 C3 = _SIMD32_OFFSET(pCoef16 + (6u * ic));
1302
1303 /* Twiddle coefficients index modifier */
1304 ic = ic + twidCoefModifier;
1305
1306 /* Butterfly implementation */
1307 for (i0 = j; i0 < fftLen; i0 += n1)
1308 {
1309 /* index calculation for the input as, */
1310 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
1311 i1 = i0 + n2;
1312 i2 = i1 + n2;
1313 i3 = i2 + n2;
1314
1315 /* Reading i0, i0+fftLen/2 inputs */
1316 /* Read ya (real), xa(imag) input */
1317 T = _SIMD32_OFFSET(pSrc16 + (2u * i0));
1318
1319 /* Read yc (real), xc(imag) input */
1320 S = _SIMD32_OFFSET(pSrc16 + (2u * i2));
1321
1322 /* R = packed( (ya + yc), (xa + xc)) */
1323 R = __QADD16(T, S);
1324
1325 /* S = packed((ya - yc), (xa - xc)) */
1326 S = __QSUB16(T, S);
1327
1328 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
1329 /* Read yb (real), xb(imag) input */
1330 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
1331
1332 /* Read yd (real), xd(imag) input */
1333 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
1334
1335 /* T = packed( (yb + yd), (xb + xd)) */
1336 T = __QADD16(T, U);
1337
1338 /* writing the butterfly processed i0 sample */
1339
1340 /* xa' = xa + xb + xc + xd */
1341 /* ya' = ya + yb + yc + yd */
1342 out1 = __SHADD16(R, T);
1343 in = ((int16_t) (out1 & 0xFFFF)) >> 1;
1344 out1 = ((out1 >> 1) & 0xFFFF0000) | (in & 0xFFFF);
1345 _SIMD32_OFFSET(pSrc16 + (2u * i0)) = out1;
1346
1347 /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
1348 R = __SHSUB16(R, T);
1349
1350 #ifndef ARM_MATH_BIG_ENDIAN
1351
1352 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
1353 out1 = __SMUSD(C2, R) >> 16u;
1354
1355 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
1356 out2 = __SMUADX(C2, R);
1357
1358 #else
1359
1360 /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
1361 out1 = __SMUADX(R, C2) >> 16u;
1362
1363 /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
1364 out2 = __SMUSD(__QSUB16(0, C2), R);
1365
1366 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1367
1368 /* Reading i0+3fftLen/4 */
1369 /* Read yb (real), xb(imag) input */
1370 T = _SIMD32_OFFSET(pSrc16 + (2u * i1));
1371
1372 /* writing the butterfly processed i0 + fftLen/4 sample */
1373 /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
1374 /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
1375 _SIMD32_OFFSET(pSrc16 + (2u * i1)) =
1376 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
1377
1378 /* Butterfly calculations */
1379
1380 /* Read yd (real), xd(imag) input */
1381 U = _SIMD32_OFFSET(pSrc16 + (2u * i3));
1382
1383 /* T = packed(yb-yd, xb-xd) */
1384 T = __QSUB16(T, U);
1385
1386 #ifndef ARM_MATH_BIG_ENDIAN
1387
1388 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
1389 R = __SHSAX(S, T);
1390
1391 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
1392 S = __SHASX(S, T);
1393
1394
1395 /* Butterfly process for the i0+fftLen/2 sample */
1396 out1 = __SMUSD(C1, S) >> 16u;
1397 out2 = __SMUADX(C1, S);
1398
1399 #else
1400
1401 /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
1402 R = __SHASX(S, T);
1403
1404 /* S = packed((ya-yc) - (xb- xd), (xa-xc) + (yb-yd)) */
1405 S = __SHSAX(S, T);
1406
1407
1408 /* Butterfly process for the i0+fftLen/2 sample */
1409 out1 = __SMUADX(S, C1) >> 16u;
1410 out2 = __SMUSD(__QSUB16(0, C1), S);
1411
1412 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1413
1414 /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
1415 /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
1416 _SIMD32_OFFSET(pSrc16 + (2u * i2)) =
1417 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
1418
1419 /* Butterfly process for the i0+3fftLen/4 sample */
1420
1421 #ifndef ARM_MATH_BIG_ENDIAN
1422
1423 out1 = __SMUSD(C3, R) >> 16u;
1424 out2 = __SMUADX(C3, R);
1425
1426 #else
1427
1428 out1 = __SMUADX(C3, R) >> 16u;
1429 out2 = __SMUSD(__QSUB16(0, C3), R);
1430
1431 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1432
1433 /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
1434 /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
1435 _SIMD32_OFFSET(pSrc16 + (2u * i3)) =
1436 ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
1437 }
1438 }
1439 /* Twiddle coefficients index modifier */
1440 twidCoefModifier <<= 2u;
1441 }
1442 /* end of middle stage process */
1443
1444 /* data is in 10.6(q6) format for the 1024 point */
1445 /* data is in 8.8(q8) format for the 256 point */
1446 /* data is in 6.10(q10) format for the 64 point */
1447 /* data is in 4.12(q12) format for the 16 point */
1448
1449 /* Initializations for the last stage */
1450 j = fftLen >> 2;
1451
1452 ptr1 = &pSrc16[0];
1453
1454 /* start of last stage process */
1455
1456 /* Butterfly implementation */
1457 do
1458 {
1459 /* Read xa (real), ya(imag) input */
1460 xaya = *__SIMD32(ptr1)++;
1461
1462 /* Read xb (real), yb(imag) input */
1463 xbyb = *__SIMD32(ptr1)++;
1464
1465 /* Read xc (real), yc(imag) input */
1466 xcyc = *__SIMD32(ptr1)++;
1467
1468 /* Read xd (real), yd(imag) input */
1469 xdyd = *__SIMD32(ptr1)++;
1470
1471 /* R = packed((ya + yc), (xa + xc)) */
1472 R = __QADD16(xaya, xcyc);
1473
1474 /* T = packed((yb + yd), (xb + xd)) */
1475 T = __QADD16(xbyb, xdyd);
1476
1477 /* pointer updation for writing */
1478 ptr1 = ptr1 - 8u;
1479
1480
1481 /* xa' = xa + xb + xc + xd */
1482 /* ya' = ya + yb + yc + yd */
1483 *__SIMD32(ptr1)++ = __SHADD16(R, T);
1484
1485 /* T = packed((yb + yd), (xb + xd)) */
1486 T = __QADD16(xbyb, xdyd);
1487
1488 /* xc' = (xa-xb+xc-xd) */
1489 /* yc' = (ya-yb+yc-yd) */
1490 *__SIMD32(ptr1)++ = __SHSUB16(R, T);
1491
1492 /* S = packed((ya - yc), (xa - xc)) */
1493 S = __QSUB16(xaya, xcyc);
1494
1495 /* Read yd (real), xd(imag) input */
1496 /* T = packed( (yb - yd), (xb - xd)) */
1497 U = __QSUB16(xbyb, xdyd);
1498
1499 #ifndef ARM_MATH_BIG_ENDIAN
1500
1501 /* xb' = (xa+yb-xc-yd) */
1502 /* yb' = (ya-xb-yc+xd) */
1503 *__SIMD32(ptr1)++ = __SHASX(S, U);
1504
1505
1506 /* xd' = (xa-yb-xc+yd) */
1507 /* yd' = (ya+xb-yc-xd) */
1508 *__SIMD32(ptr1)++ = __SHSAX(S, U);
1509
1510 #else
1511
1512 /* xb' = (xa+yb-xc-yd) */
1513 /* yb' = (ya-xb-yc+xd) */
1514 *__SIMD32(ptr1)++ = __SHSAX(S, U);
1515
1516
1517 /* xd' = (xa-yb-xc+yd) */
1518 /* yd' = (ya+xb-yc-xd) */
1519 *__SIMD32(ptr1)++ = __SHASX(S, U);
1520
1521
1522 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
1523
1524 } while(--j);
1525
1526 /* end of last stage process */
1527
1528 /* output is in 11.5(q5) format for the 1024 point */
1529 /* output is in 9.7(q7) format for the 256 point */
1530 /* output is in 7.9(q9) format for the 64 point */
1531 /* output is in 5.11(q11) format for the 16 point */
1532
1533
1534 #else
1535
1536 /* Run the below code for Cortex-M0 */
1537
1538 q15_t R0, R1, S0, S1, T0, T1, U0, U1;
1539 q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2;
1540 uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
1541
1542 /* Total process is divided into three stages */
1543
1544 /* process first stage, middle stages, & last stage */
1545
1546 /* Initializations for the first stage */
1547 n2 = fftLen;
1548 n1 = n2;
1549
1550 /* n2 = fftLen/4 */
1551 n2 >>= 2u;
1552
1553 /* Index for twiddle coefficient */
1554 ic = 0u;
1555
1556 /* Index for input read and output write */
1557 i0 = 0u;
1558
1559 j = n2;
1560
1561 /* Input is in 1.15(q15) format */
1562
1563 /* Start of first stage process */
1564 do
1565 {
1566 /* Butterfly implementation */
1567
1568 /* index calculation for the input as, */
1569 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
1570 i1 = i0 + n2;
1571 i2 = i1 + n2;
1572 i3 = i2 + n2;
1573
1574 /* Reading i0, i0+fftLen/2 inputs */
1575 /* input is down scale by 4 to avoid overflow */
1576 /* Read ya (real), xa(imag) input */
1577 T0 = pSrc16[i0 * 2u] >> 2u;
1578 T1 = pSrc16[(i0 * 2u) + 1u] >> 2u;
1579 /* input is down scale by 4 to avoid overflow */
1580 /* Read yc (real), xc(imag) input */
1581 S0 = pSrc16[i2 * 2u] >> 2u;
1582 S1 = pSrc16[(i2 * 2u) + 1u] >> 2u;
1583
1584 /* R0 = (ya + yc), R1 = (xa + xc) */
1585 R0 = __SSAT(T0 + S0, 16u);
1586 R1 = __SSAT(T1 + S1, 16u);
1587 /* S0 = (ya - yc), S1 = (xa - xc) */
1588 S0 = __SSAT(T0 - S0, 16u);
1589 S1 = __SSAT(T1 - S1, 16u);
1590
1591 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
1592 /* input is down scale by 4 to avoid overflow */
1593 /* Read yb (real), xb(imag) input */
1594 T0 = pSrc16[i1 * 2u] >> 2u;
1595 T1 = pSrc16[(i1 * 2u) + 1u] >> 2u;
1596 /* Read yd (real), xd(imag) input */
1597 /* input is down scale by 4 to avoid overflow */
1598 U0 = pSrc16[i3 * 2u] >> 2u;
1599 U1 = pSrc16[(i3 * 2u) + 1u] >> 2u;
1600
1601 /* T0 = (yb + yd), T1 = (xb + xd) */
1602 T0 = __SSAT(T0 + U0, 16u);
1603 T1 = __SSAT(T1 + U1, 16u);
1604
1605 /* writing the butterfly processed i0 sample */
1606 /* xa' = xa + xb + xc + xd */
1607 /* ya' = ya + yb + yc + yd */
1608 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
1609 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
1610
1611 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc)- (xb + xd) */
1612 R0 = __SSAT(R0 - T0, 16u);
1613 R1 = __SSAT(R1 - T1, 16u);
1614 /* co2 & si2 are read from Coefficient pointer */
1615 Co2 = pCoef16[2u * ic * 2u];
1616 Si2 = pCoef16[(2u * ic * 2u) + 1u];
1617 /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
1618 out1 = (short) ((Co2 * R0 - Si2 * R1) >> 16u);
1619 /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
1620 out2 = (short) ((Si2 * R0 + Co2 * R1) >> 16u);
1621
1622 /* Reading i0+fftLen/4 */
1623 /* input is down scale by 4 to avoid overflow */
1624 /* T0 = yb, T1 = xb */
1625 T0 = pSrc16[i1 * 2u] >> 2u;
1626 T1 = pSrc16[(i1 * 2u) + 1u] >> 2u;
1627
1628 /* writing the butterfly processed i0 + fftLen/4 sample */
1629 /* writing output(xc', yc') in little endian format */
1630 pSrc16[i1 * 2u] = out1;
1631 pSrc16[(i1 * 2u) + 1u] = out2;
1632
1633 /* Butterfly calculations */
1634 /* input is down scale by 4 to avoid overflow */
1635 /* U0 = yd, U1 = xd) */
1636 U0 = pSrc16[i3 * 2u] >> 2u;
1637 U1 = pSrc16[(i3 * 2u) + 1u] >> 2u;
1638
1639 /* T0 = yb-yd, T1 = xb-xd) */
1640 T0 = __SSAT(T0 - U0, 16u);
1641 T1 = __SSAT(T1 - U1, 16u);
1642 /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */
1643 R0 = (short) __SSAT((q31_t) (S0 + T1), 16);
1644 R1 = (short) __SSAT((q31_t) (S1 - T0), 16);
1645 /* S = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */
1646 S0 = (short) __SSAT((q31_t) (S0 - T1), 16);
1647 S1 = (short) __SSAT((q31_t) (S1 + T0), 16);
1648
1649 /* co1 & si1 are read from Coefficient pointer */
1650 Co1 = pCoef16[ic * 2u];
1651 Si1 = pCoef16[(ic * 2u) + 1u];
1652 /* Butterfly process for the i0+fftLen/2 sample */
1653 /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
1654 out1 = (short) ((Co1 * S0 - Si1 * S1) >> 16u);
1655 /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
1656 out2 = (short) ((Si1 * S0 + Co1 * S1) >> 16u);
1657 /* writing output(xb', yb') in little endian format */
1658 pSrc16[i2 * 2u] = out1;
1659 pSrc16[(i2 * 2u) + 1u] = out2;
1660
1661 /* Co3 & si3 are read from Coefficient pointer */
1662 Co3 = pCoef16[3u * ic * 2u];
1663 Si3 = pCoef16[(3u * ic * 2u) + 1u];
1664 /* Butterfly process for the i0+3fftLen/4 sample */
1665 /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */
1666 out1 = (short) ((Co3 * R0 - Si3 * R1) >> 16u);
1667 /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */
1668 out2 = (short) ((Si3 * R0 + Co3 * R1) >> 16u);
1669 /* writing output(xd', yd') in little endian format */
1670 pSrc16[i3 * 2u] = out1;
1671 pSrc16[(i3 * 2u) + 1u] = out2;
1672
1673 /* Twiddle coefficients index modifier */
1674 ic = ic + twidCoefModifier;
1675
1676 /* Updating input index */
1677 i0 = i0 + 1u;
1678
1679 } while(--j);
1680
1681 /* End of first stage process */
1682
1683 /* data is in 4.11(q11) format */
1684
1685
1686 /* Start of Middle stage process */
1687
1688 /* Twiddle coefficients index modifier */
1689 twidCoefModifier <<= 2u;
1690
1691 /* Calculation of Middle stage */
1692 for (k = fftLen / 4u; k > 4u; k >>= 2u)
1693 {
1694 /* Initializations for the middle stage */
1695 n1 = n2;
1696 n2 >>= 2u;
1697 ic = 0u;
1698
1699 for (j = 0u; j <= (n2 - 1u); j++)
1700 {
1701 /* index calculation for the coefficients */
1702 Co1 = pCoef16[ic * 2u];
1703 Si1 = pCoef16[(ic * 2u) + 1u];
1704 Co2 = pCoef16[2u * ic * 2u];
1705 Si2 = pCoef16[2u * ic * 2u + 1u];
1706 Co3 = pCoef16[3u * ic * 2u];
1707 Si3 = pCoef16[(3u * ic * 2u) + 1u];
1708
1709 /* Twiddle coefficients index modifier */
1710 ic = ic + twidCoefModifier;
1711
1712 /* Butterfly implementation */
1713 for (i0 = j; i0 < fftLen; i0 += n1)
1714 {
1715 /* index calculation for the input as, */
1716 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
1717 i1 = i0 + n2;
1718 i2 = i1 + n2;
1719 i3 = i2 + n2;
1720
1721 /* Reading i0, i0+fftLen/2 inputs */
1722 /* Read ya (real), xa(imag) input */
1723 T0 = pSrc16[i0 * 2u];
1724 T1 = pSrc16[(i0 * 2u) + 1u];
1725
1726 /* Read yc (real), xc(imag) input */
1727 S0 = pSrc16[i2 * 2u];
1728 S1 = pSrc16[(i2 * 2u) + 1u];
1729
1730
1731 /* R0 = (ya + yc), R1 = (xa + xc) */
1732 R0 = __SSAT(T0 + S0, 16u);
1733 R1 = __SSAT(T1 + S1, 16u);
1734 /* S0 = (ya - yc), S1 = (xa - xc) */
1735 S0 = __SSAT(T0 - S0, 16u);
1736 S1 = __SSAT(T1 - S1, 16u);
1737
1738 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
1739 /* Read yb (real), xb(imag) input */
1740 T0 = pSrc16[i1 * 2u];
1741 T1 = pSrc16[(i1 * 2u) + 1u];
1742
1743 /* Read yd (real), xd(imag) input */
1744 U0 = pSrc16[i3 * 2u];
1745 U1 = pSrc16[(i3 * 2u) + 1u];
1746
1747 /* T0 = (yb + yd), T1 = (xb + xd) */
1748 T0 = __SSAT(T0 + U0, 16u);
1749 T1 = __SSAT(T1 + U1, 16u);
1750
1751 /* writing the butterfly processed i0 sample */
1752 /* xa' = xa + xb + xc + xd */
1753 /* ya' = ya + yb + yc + yd */
1754 pSrc16[i0 * 2u] = ((R0 >> 1u) + (T0 >> 1u)) >> 1u;
1755 pSrc16[(i0 * 2u) + 1u] = ((R1 >> 1u) + (T1 >> 1u)) >> 1u;
1756
1757 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
1758 R0 = (R0 >> 1u) - (T0 >> 1u);
1759 R1 = (R1 >> 1u) - (T1 >> 1u);
1760
1761 /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */
1762 out1 = (short) ((Co2 * R0 - Si2 * R1) >> 16);
1763 /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
1764 out2 = (short) ((Si2 * R0 + Co2 * R1) >> 16);
1765
1766 /* Reading i0+3fftLen/4 */
1767 /* Read yb (real), xb(imag) input */
1768 T0 = pSrc16[i1 * 2u];
1769 T1 = pSrc16[(i1 * 2u) + 1u];
1770
1771 /* writing the butterfly processed i0 + fftLen/4 sample */
1772 /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
1773 /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
1774 pSrc16[i1 * 2u] = out1;
1775 pSrc16[(i1 * 2u) + 1u] = out2;
1776
1777 /* Butterfly calculations */
1778 /* Read yd (real), xd(imag) input */
1779 U0 = pSrc16[i3 * 2u];
1780 U1 = pSrc16[(i3 * 2u) + 1u];
1781
1782 /* T0 = yb-yd, T1 = xb-xd) */
1783 T0 = __SSAT(T0 - U0, 16u);
1784 T1 = __SSAT(T1 - U1, 16u);
1785
1786 /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */
1787 R0 = (S0 >> 1u) + (T1 >> 1u);
1788 R1 = (S1 >> 1u) - (T0 >> 1u);
1789
1790 /* S1 = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */
1791 S0 = (S0 >> 1u) - (T1 >> 1u);
1792 S1 = (S1 >> 1u) + (T0 >> 1u);
1793
1794 /* Butterfly process for the i0+fftLen/2 sample */
1795 out1 = (short) ((Co1 * S0 - Si1 * S1) >> 16u);
1796 out2 = (short) ((Si1 * S0 + Co1 * S1) >> 16u);
1797 /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
1798 /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
1799 pSrc16[i2 * 2u] = out1;
1800 pSrc16[(i2 * 2u) + 1u] = out2;
1801
1802 /* Butterfly process for the i0+3fftLen/4 sample */
1803 out1 = (short) ((Co3 * R0 - Si3 * R1) >> 16u);
1804
1805 out2 = (short) ((Si3 * R0 + Co3 * R1) >> 16u);
1806 /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */
1807 /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */
1808 pSrc16[i3 * 2u] = out1;
1809 pSrc16[(i3 * 2u) + 1u] = out2;
1810
1811
1812 }
1813 }
1814 /* Twiddle coefficients index modifier */
1815 twidCoefModifier <<= 2u;
1816 }
1817 /* End of Middle stages process */
1818
1819
1820 /* data is in 10.6(q6) format for the 1024 point */
1821 /* data is in 8.8(q8) format for the 256 point */
1822 /* data is in 6.10(q10) format for the 64 point */
1823 /* data is in 4.12(q12) format for the 16 point */
1824
1825 /* start of last stage process */
1826
1827
1828 /* Initializations for the last stage */
1829 n1 = n2;
1830 n2 >>= 2u;
1831
1832 /* Butterfly implementation */
1833 for (i0 = 0u; i0 <= (fftLen - n1); i0 += n1)
1834 {
1835 /* index calculation for the input as, */
1836 /* pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
1837 i1 = i0 + n2;
1838 i2 = i1 + n2;
1839 i3 = i2 + n2;
1840
1841 /* Reading i0, i0+fftLen/2 inputs */
1842 /* Read ya (real), xa(imag) input */
1843 T0 = pSrc16[i0 * 2u];
1844 T1 = pSrc16[(i0 * 2u) + 1u];
1845 /* Read yc (real), xc(imag) input */
1846 S0 = pSrc16[i2 * 2u];
1847 S1 = pSrc16[(i2 * 2u) + 1u];
1848
1849 /* R0 = (ya + yc), R1 = (xa + xc) */
1850 R0 = __SSAT(T0 + S0, 16u);
1851 R1 = __SSAT(T1 + S1, 16u);
1852 /* S0 = (ya - yc), S1 = (xa - xc) */
1853 S0 = __SSAT(T0 - S0, 16u);
1854 S1 = __SSAT(T1 - S1, 16u);
1855
1856 /* Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
1857 /* Read yb (real), xb(imag) input */
1858 T0 = pSrc16[i1 * 2u];
1859 T1 = pSrc16[(i1 * 2u) + 1u];
1860 /* Read yd (real), xd(imag) input */
1861 U0 = pSrc16[i3 * 2u];
1862 U1 = pSrc16[(i3 * 2u) + 1u];
1863
1864 /* T0 = (yb + yd), T1 = (xb + xd) */
1865 T0 = __SSAT(T0 + U0, 16u);
1866 T1 = __SSAT(T1 + U1, 16u);
1867
1868 /* writing the butterfly processed i0 sample */
1869 /* xa' = xa + xb + xc + xd */
1870 /* ya' = ya + yb + yc + yd */
1871 pSrc16[i0 * 2u] = (R0 >> 1u) + (T0 >> 1u);
1872 pSrc16[(i0 * 2u) + 1u] = (R1 >> 1u) + (T1 >> 1u);
1873
1874 /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
1875 R0 = (R0 >> 1u) - (T0 >> 1u);
1876 R1 = (R1 >> 1u) - (T1 >> 1u);
1877
1878 /* Read yb (real), xb(imag) input */
1879 T0 = pSrc16[i1 * 2u];
1880 T1 = pSrc16[(i1 * 2u) + 1u];
1881
1882 /* writing the butterfly processed i0 + fftLen/4 sample */
1883 /* xc' = (xa-xb+xc-xd) */
1884 /* yc' = (ya-yb+yc-yd) */
1885 pSrc16[i1 * 2u] = R0;
1886 pSrc16[(i1 * 2u) + 1u] = R1;
1887
1888 /* Read yd (real), xd(imag) input */
1889 U0 = pSrc16[i3 * 2u];
1890 U1 = pSrc16[(i3 * 2u) + 1u];
1891 /* T0 = (yb - yd), T1 = (xb - xd) */
1892 T0 = __SSAT(T0 - U0, 16u);
1893 T1 = __SSAT(T1 - U1, 16u);
1894
1895 /* writing the butterfly processed i0 + fftLen/2 sample */
1896 /* xb' = (xa-yb-xc+yd) */
1897 /* yb' = (ya+xb-yc-xd) */
1898 pSrc16[i2 * 2u] = (S0 >> 1u) - (T1 >> 1u);
1899 pSrc16[(i2 * 2u) + 1u] = (S1 >> 1u) + (T0 >> 1u);
1900
1901
1902 /* writing the butterfly processed i0 + 3fftLen/4 sample */
1903 /* xd' = (xa+yb-xc-yd) */
1904 /* yd' = (ya-xb-yc+xd) */
1905 pSrc16[i3 * 2u] = (S0 >> 1u) + (T1 >> 1u);
1906 pSrc16[(i3 * 2u) + 1u] = (S1 >> 1u) - (T0 >> 1u);
1907 }
1908 /* end of last stage process */
1909
1910 /* output is in 11.5(q5) format for the 1024 point */
1911 /* output is in 9.7(q7) format for the 256 point */
1912 /* output is in 7.9(q9) format for the 64 point */
1913 /* output is in 5.11(q11) format for the 16 point */
1914
1915 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
1916
1917 }
Imprint / Impressum