]> git.gir.st - tmk_keyboard.git/blob - tmk_core/tool/mbed/mbed-sdk/libraries/mbed/targets/hal/TARGET_STM/TARGET_STM32F1/serial_api.c
Merge commit '1fe4406f374291ab2e86e95a97341fd9c475fcb8'
[tmk_keyboard.git] / tmk_core / tool / mbed / mbed-sdk / libraries / mbed / targets / hal / TARGET_STM / TARGET_STM32F1 / serial_api.c
1 /* mbed Microcontroller Library
2 *******************************************************************************
3 * Copyright (c) 2014, STMicroelectronics
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice,
10 * this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright notice,
12 * this list of conditions and the following disclaimer in the documentation
13 * and/or other materials provided with the distribution.
14 * 3. Neither the name of STMicroelectronics nor the names of its contributors
15 * may be used to endorse or promote products derived from this software
16 * without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *******************************************************************************
29 */
30 #include "mbed_assert.h"
31 #include "serial_api.h"
32
33 #if DEVICE_SERIAL
34
35 #include "cmsis.h"
36 #include "pinmap.h"
37 #include <string.h>
38 #include "PeripheralPins.h"
39
40 #define UART_NUM (3)
41
42 static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0};
43
44 static uart_irq_handler irq_handler;
45
46 UART_HandleTypeDef UartHandle;
47
48 int stdio_uart_inited = 0;
49 serial_t stdio_uart;
50
51 static void init_uart(serial_t *obj)
52 {
53 UartHandle.Instance = (USART_TypeDef *)(obj->uart);
54
55 UartHandle.Init.BaudRate = obj->baudrate;
56 UartHandle.Init.WordLength = obj->databits;
57 UartHandle.Init.StopBits = obj->stopbits;
58 UartHandle.Init.Parity = obj->parity;
59 UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
60
61 if (obj->pin_rx == NC) {
62 UartHandle.Init.Mode = UART_MODE_TX;
63 } else if (obj->pin_tx == NC) {
64 UartHandle.Init.Mode = UART_MODE_RX;
65 } else {
66 UartHandle.Init.Mode = UART_MODE_TX_RX;
67 }
68
69 HAL_UART_Init(&UartHandle);
70 }
71
72 void serial_init(serial_t *obj, PinName tx, PinName rx)
73 {
74 // Determine the UART to use (UART_1, UART_2, ...)
75 UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX);
76 UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX);
77
78 // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object
79 obj->uart = (UARTName)pinmap_merge(uart_tx, uart_rx);
80 MBED_ASSERT(obj->uart != (UARTName)NC);
81
82 // Enable UART clock
83 if (obj->uart == UART_1) {
84 __HAL_RCC_USART1_CLK_ENABLE();
85 obj->index = 0;
86 }
87 if (obj->uart == UART_2) {
88 __HAL_RCC_USART2_CLK_ENABLE();
89 obj->index = 1;
90 }
91 if (obj->uart == UART_3) {
92 __HAL_RCC_USART3_CLK_ENABLE();
93 obj->index = 2;
94 }
95
96 // Configure UART pins
97 pinmap_pinout(tx, PinMap_UART_TX);
98 pinmap_pinout(rx, PinMap_UART_RX);
99 if (tx != NC) {
100 pin_mode(tx, PullUp);
101 }
102 if (rx != NC) {
103 pin_mode(rx, PullUp);
104 }
105
106 // Configure UART
107 obj->baudrate = 9600;
108 obj->databits = UART_WORDLENGTH_8B;
109 obj->stopbits = UART_STOPBITS_1;
110 obj->parity = UART_PARITY_NONE;
111
112 obj->pin_tx = tx;
113 obj->pin_rx = rx;
114
115 init_uart(obj);
116
117 // For stdio management
118 if (obj->uart == STDIO_UART) {
119 stdio_uart_inited = 1;
120 memcpy(&stdio_uart, obj, sizeof(serial_t));
121 }
122 }
123
124 void serial_free(serial_t *obj)
125 {
126 // Reset UART and disable clock
127 if (obj->uart == UART_1) {
128 __USART1_FORCE_RESET();
129 __USART1_RELEASE_RESET();
130 __USART1_CLK_DISABLE();
131 }
132 if (obj->uart == UART_2) {
133 __USART2_FORCE_RESET();
134 __USART2_RELEASE_RESET();
135 __USART2_CLK_DISABLE();
136 }
137 if (obj->uart == UART_3) {
138 __USART3_FORCE_RESET();
139 __USART3_RELEASE_RESET();
140 __USART3_CLK_DISABLE();
141 }
142
143 // Configure GPIOs
144 pin_function(obj->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
145 pin_function(obj->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0));
146
147 serial_irq_ids[obj->index] = 0;
148 }
149
150 void serial_baud(serial_t *obj, int baudrate)
151 {
152 obj->baudrate = baudrate;
153 init_uart(obj);
154 }
155
156 void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
157 {
158 if (data_bits == 9) {
159 obj->databits = UART_WORDLENGTH_9B;
160 } else {
161 obj->databits = UART_WORDLENGTH_8B;
162 }
163
164 switch (parity) {
165 case ParityOdd:
166 case ParityForced0:
167 obj->parity = UART_PARITY_ODD;
168 break;
169 case ParityEven:
170 case ParityForced1:
171 obj->parity = UART_PARITY_EVEN;
172 break;
173 default: // ParityNone
174 obj->parity = UART_PARITY_NONE;
175 break;
176 }
177
178 if (stop_bits == 2) {
179 obj->stopbits = UART_STOPBITS_2;
180 } else {
181 obj->stopbits = UART_STOPBITS_1;
182 }
183
184 init_uart(obj);
185 }
186
187 /******************************************************************************
188 * INTERRUPTS HANDLING
189 ******************************************************************************/
190
191 static void uart_irq(UARTName name, int id)
192 {
193 UartHandle.Instance = (USART_TypeDef *)name;
194 if (serial_irq_ids[id] != 0) {
195 if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TC) != RESET) {
196 irq_handler(serial_irq_ids[id], TxIrq);
197 __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_TC);
198 }
199 if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) {
200 irq_handler(serial_irq_ids[id], RxIrq);
201 __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_RXNE);
202 }
203 }
204 }
205
206 static void uart1_irq(void)
207 {
208 uart_irq(UART_1, 0);
209 }
210
211 static void uart2_irq(void)
212 {
213 uart_irq(UART_2, 1);
214 }
215
216 static void uart3_irq(void)
217 {
218 uart_irq(UART_3, 2);
219 }
220
221 void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
222 {
223 irq_handler = handler;
224 serial_irq_ids[obj->index] = id;
225 }
226
227 void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
228 {
229 IRQn_Type irq_n = (IRQn_Type)0;
230 uint32_t vector = 0;
231
232 UartHandle.Instance = (USART_TypeDef *)(obj->uart);
233
234 if (obj->uart == UART_1) {
235 irq_n = USART1_IRQn;
236 vector = (uint32_t)&uart1_irq;
237 }
238
239 if (obj->uart == UART_2) {
240 irq_n = USART2_IRQn;
241 vector = (uint32_t)&uart2_irq;
242 }
243
244 if (obj->uart == UART_3) {
245 irq_n = USART3_IRQn;
246 vector = (uint32_t)&uart3_irq;
247 }
248
249 if (enable) {
250
251 if (irq == RxIrq) {
252 __HAL_UART_ENABLE_IT(&UartHandle, UART_IT_RXNE);
253 } else { // TxIrq
254 __HAL_UART_ENABLE_IT(&UartHandle, UART_IT_TC);
255 }
256
257 NVIC_SetVector(irq_n, vector);
258 NVIC_EnableIRQ(irq_n);
259
260 } else { // disable
261
262 int all_disabled = 0;
263
264 if (irq == RxIrq) {
265 __HAL_UART_DISABLE_IT(&UartHandle, UART_IT_RXNE);
266 // Check if TxIrq is disabled too
267 if ((UartHandle.Instance->CR1 & USART_CR1_TCIE) == 0) all_disabled = 1;
268 } else { // TxIrq
269 __HAL_UART_DISABLE_IT(&UartHandle, UART_IT_TC);
270 // Check if RxIrq is disabled too
271 if ((UartHandle.Instance->CR1 & USART_CR1_RXNEIE) == 0) all_disabled = 1;
272 }
273
274 if (all_disabled) NVIC_DisableIRQ(irq_n);
275
276 }
277 }
278
279 /******************************************************************************
280 * READ/WRITE
281 ******************************************************************************/
282
283 int serial_getc(serial_t *obj)
284 {
285 USART_TypeDef *uart = (USART_TypeDef *)(obj->uart);
286 while (!serial_readable(obj));
287 if (obj->databits == UART_WORDLENGTH_8B) {
288 return (int)(uart->DR & (uint8_t)0xFF);
289 } else {
290 return (int)(uart->DR & (uint16_t)0x1FF);
291 }
292 }
293
294 void serial_putc(serial_t *obj, int c)
295 {
296 USART_TypeDef *uart = (USART_TypeDef *)(obj->uart);
297 while (!serial_writable(obj));
298 if (obj->databits == UART_WORDLENGTH_8B) {
299 uart->DR = (uint8_t)(c & (uint8_t)0xFF);
300 } else {
301 uart->DR = (uint16_t)(c & (uint16_t)0x1FF);
302 }
303 }
304
305 int serial_readable(serial_t *obj)
306 {
307 int status;
308 UartHandle.Instance = (USART_TypeDef *)(obj->uart);
309 // Check if data is received
310 status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET) ? 1 : 0);
311 return status;
312 }
313
314 int serial_writable(serial_t *obj)
315 {
316 int status;
317 UartHandle.Instance = (USART_TypeDef *)(obj->uart);
318 // Check if data is transmitted
319 status = ((__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_TXE) != RESET) ? 1 : 0);
320 return status;
321 }
322
323 void serial_clear(serial_t *obj)
324 {
325 UartHandle.Instance = (USART_TypeDef *)(obj->uart);
326 __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_TXE);
327 __HAL_UART_CLEAR_FLAG(&UartHandle, UART_FLAG_RXNE);
328 }
329
330 void serial_pinout_tx(PinName tx)
331 {
332 pinmap_pinout(tx, PinMap_UART_TX);
333 }
334
335 void serial_break_set(serial_t *obj)
336 {
337 UartHandle.Instance = (USART_TypeDef *)(obj->uart);
338 HAL_LIN_SendBreak(&UartHandle);
339 }
340
341 void serial_break_clear(serial_t *obj)
342 {
343 }
344
345 #endif
Imprint / Impressum