]> git.gir.st - tmk_keyboard.git/blob - protocol/lufa/LUFA-git/Projects/AVRISP-MKII/Lib/ISP/ISPProtocol.c
Squashed 'tmk_core/' changes from caca2c0..dc0e46e
[tmk_keyboard.git] / protocol / lufa / LUFA-git / Projects / AVRISP-MKII / Lib / ISP / ISPProtocol.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
34 */
35
36 #include "ISPProtocol.h"
37
38 #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
39
40 /** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
41 * the attached device, returning success or failure back to the host.
42 */
43 void ISPProtocol_EnterISPMode(void)
44 {
45 struct
46 {
47 uint8_t TimeoutMS;
48 uint8_t PinStabDelayMS;
49 uint8_t ExecutionDelayMS;
50 uint8_t SynchLoops;
51 uint8_t ByteDelay;
52 uint8_t PollValue;
53 uint8_t PollIndex;
54 uint8_t EnterProgBytes[4];
55 } Enter_ISP_Params;
56
57 Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL);
58
59 Endpoint_ClearOUT();
60 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
61 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
62
63 uint8_t ResponseStatus = STATUS_CMD_FAILED;
64
65 CurrentAddress = 0;
66
67 /* Perform execution delay, initialize SPI bus */
68 ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
69 ISPTarget_EnableTargetISP();
70
71 ISPTarget_ChangeTargetResetLine(true);
72 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
73
74 /* Continuously attempt to synchronize with the target until either the number of attempts specified
75 * by the host has exceeded, or the the device sends back the expected response values */
76 while (Enter_ISP_Params.SynchLoops-- && TimeoutTicksRemaining)
77 {
78 uint8_t ResponseBytes[4];
79
80 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
81 {
82 ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
83 ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
84 }
85
86 /* Check if polling disabled, or if the polled value matches the expected value */
87 if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
88 {
89 ResponseStatus = STATUS_CMD_OK;
90 break;
91 }
92 else
93 {
94 ISPTarget_ChangeTargetResetLine(false);
95 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
96 ISPTarget_ChangeTargetResetLine(true);
97 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
98 }
99 }
100
101 Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP);
102 Endpoint_Write_8(ResponseStatus);
103 Endpoint_ClearIN();
104 }
105
106 /** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
107 void ISPProtocol_LeaveISPMode(void)
108 {
109 struct
110 {
111 uint8_t PreDelayMS;
112 uint8_t PostDelayMS;
113 } Leave_ISP_Params;
114
115 Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL);
116
117 Endpoint_ClearOUT();
118 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
119 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
120
121 /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
122 ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
123 ISPTarget_ChangeTargetResetLine(false);
124 ISPTarget_DisableTargetISP();
125 ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);
126
127 Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP);
128 Endpoint_Write_8(STATUS_CMD_OK);
129 Endpoint_ClearIN();
130 }
131
132 /** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
133 * words or pages of data to the attached device.
134 *
135 * \param[in] V2Command Issued V2 Protocol command byte from the host
136 */
137 void ISPProtocol_ProgramMemory(uint8_t V2Command)
138 {
139 struct
140 {
141 uint16_t BytesToWrite;
142 uint8_t ProgrammingMode;
143 uint8_t DelayMS;
144 uint8_t ProgrammingCommands[3];
145 uint8_t PollValue1;
146 uint8_t PollValue2;
147 uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
148 } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting
149
150 Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
151 sizeof(Write_Memory_Params.ProgData)), NULL);
152 Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
153
154 if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
155 {
156 Endpoint_ClearOUT();
157 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
158 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
159
160 Endpoint_Write_8(V2Command);
161 Endpoint_Write_8(STATUS_CMD_FAILED);
162 Endpoint_ClearIN();
163 return;
164 }
165
166 Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL);
167
168 // The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need
169 // to catch this and discard it before continuing on with packet processing to prevent communication issues
170 if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) +
171 Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0)
172 {
173 Endpoint_ClearOUT();
174 Endpoint_WaitUntilReady();
175 }
176
177 Endpoint_ClearOUT();
178 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
179 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
180
181 uint8_t ProgrammingStatus = STATUS_CMD_OK;
182 uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
183 Write_Memory_Params.PollValue2;
184 uint16_t PollAddress = 0;
185 uint8_t* NextWriteByte = Write_Memory_Params.ProgData;
186 uint16_t PageStartAddress = (CurrentAddress & 0xFFFF);
187
188 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
189 {
190 uint8_t ByteToWrite = *(NextWriteByte++);
191 uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode;
192
193 /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
194 if (MustLoadExtendedAddress)
195 {
196 ISPTarget_LoadExtendedAddress();
197 MustLoadExtendedAddress = false;
198 }
199
200 ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
201 ISPTarget_SendByte(CurrentAddress >> 8);
202 ISPTarget_SendByte(CurrentAddress & 0xFF);
203 ISPTarget_SendByte(ByteToWrite);
204
205 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
206 * or low byte at the current word address */
207 if (V2Command == CMD_PROGRAM_FLASH_ISP)
208 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
209
210 /* Check to see if we have a valid polling address */
211 if (!(PollAddress) && (ByteToWrite != PollValue))
212 {
213 if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP))
214 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
215 else
216 Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK;
217
218 PollAddress = (CurrentAddress & 0xFFFF);
219 }
220
221 /* If in word programming mode, commit the byte to the target's memory */
222 if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK))
223 {
224 /* If the current polling address is invalid, switch to timed delay write completion mode */
225 if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK))
226 ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK;
227
228 ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue,
229 Write_Memory_Params.DelayMS,
230 Write_Memory_Params.ProgrammingCommands[2]);
231
232 /* Abort the programming loop early if the byte/word programming failed */
233 if (ProgrammingStatus != STATUS_CMD_OK)
234 break;
235
236 /* Must reset the polling address afterwards, so it is not erroneously used for the next byte */
237 PollAddress = 0;
238 }
239
240 /* EEPROM just increments the address each byte, flash needs to increment on each word and
241 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
242 * address boundary has been crossed during FLASH memory programming */
243 if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP))
244 {
245 CurrentAddress++;
246
247 if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
248 MustLoadExtendedAddress = true;
249 }
250 }
251
252 /* If the current page must be committed, send the PROGRAM PAGE command to the target */
253 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
254 {
255 ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
256 ISPTarget_SendByte(PageStartAddress >> 8);
257 ISPTarget_SendByte(PageStartAddress & 0xFF);
258 ISPTarget_SendByte(0x00);
259
260 /* Check if polling is enabled and possible, if not switch to timed delay mode */
261 if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress))
262 {
263 Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) |
264 PROG_MODE_PAGED_TIMEDELAY_MASK;
265 }
266
267 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
268 Write_Memory_Params.DelayMS,
269 Write_Memory_Params.ProgrammingCommands[2]);
270
271 /* Check to see if the FLASH address has crossed the extended address boundary */
272 if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
273 MustLoadExtendedAddress = true;
274 }
275
276 Endpoint_Write_8(V2Command);
277 Endpoint_Write_8(ProgrammingStatus);
278 Endpoint_ClearIN();
279 }
280
281 /** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
282 * words or pages of data from the attached device.
283 *
284 * \param[in] V2Command Issued V2 Protocol command byte from the host
285 */
286 void ISPProtocol_ReadMemory(uint8_t V2Command)
287 {
288 struct
289 {
290 uint16_t BytesToRead;
291 uint8_t ReadMemoryCommand;
292 } Read_Memory_Params;
293
294 Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL);
295 Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
296
297 Endpoint_ClearOUT();
298 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
299 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
300
301 Endpoint_Write_8(V2Command);
302 Endpoint_Write_8(STATUS_CMD_OK);
303
304 /* Read each byte from the device and write them to the packet for the host */
305 for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
306 {
307 /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
308 if (MustLoadExtendedAddress)
309 {
310 ISPTarget_LoadExtendedAddress();
311 MustLoadExtendedAddress = false;
312 }
313
314 /* Read the next byte from the desired memory space in the device */
315 ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand);
316 ISPTarget_SendByte(CurrentAddress >> 8);
317 ISPTarget_SendByte(CurrentAddress & 0xFF);
318 Endpoint_Write_8(ISPTarget_ReceiveByte());
319
320 /* Check if the endpoint bank is currently full, if so send the packet */
321 if (!(Endpoint_IsReadWriteAllowed()))
322 {
323 Endpoint_ClearIN();
324 Endpoint_WaitUntilReady();
325 }
326
327 /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
328 * or low byte at the current word address */
329 if (V2Command == CMD_READ_FLASH_ISP)
330 Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
331
332 /* EEPROM just increments the address each byte, flash needs to increment on each word and
333 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
334 * address boundary has been crossed */
335 if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP))
336 {
337 CurrentAddress++;
338
339 if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
340 MustLoadExtendedAddress = true;
341 }
342 }
343
344 Endpoint_Write_8(STATUS_CMD_OK);
345
346 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
347 Endpoint_ClearIN();
348
349 /* Ensure last packet is a short packet to terminate the transfer */
350 if (IsEndpointFull)
351 {
352 Endpoint_WaitUntilReady();
353 Endpoint_ClearIN();
354 Endpoint_WaitUntilReady();
355 }
356 }
357
358 /** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
359 void ISPProtocol_ChipErase(void)
360 {
361 struct
362 {
363 uint8_t EraseDelayMS;
364 uint8_t PollMethod;
365 uint8_t EraseCommandBytes[4];
366 } Erase_Chip_Params;
367
368 Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL);
369
370 Endpoint_ClearOUT();
371 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
372 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
373
374 uint8_t ResponseStatus = STATUS_CMD_OK;
375
376 /* Send the chip erase commands as given by the host to the device */
377 for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
378 ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
379
380 /* Use appropriate command completion check as given by the host (delay or busy polling) */
381 if (!(Erase_Chip_Params.PollMethod))
382 ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
383 else
384 ResponseStatus = ISPTarget_WaitWhileTargetBusy();
385
386 Endpoint_Write_8(CMD_CHIP_ERASE_ISP);
387 Endpoint_Write_8(ResponseStatus);
388 Endpoint_ClearIN();
389 }
390
391 /** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
392 * reading the requested configuration byte from the device.
393 *
394 * \param[in] V2Command Issued V2 Protocol command byte from the host
395 */
396 void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
397 {
398 struct
399 {
400 uint8_t RetByte;
401 uint8_t ReadCommandBytes[4];
402 } Read_FuseLockSigOSCCAL_Params;
403
404 Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL);
405
406 Endpoint_ClearOUT();
407 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
408 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
409
410 uint8_t ResponseBytes[4];
411
412 /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
413 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
414 ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
415
416 Endpoint_Write_8(V2Command);
417 Endpoint_Write_8(STATUS_CMD_OK);
418 Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
419 Endpoint_Write_8(STATUS_CMD_OK);
420 Endpoint_ClearIN();
421 }
422
423 /** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
424 * byte to the device.
425 *
426 * \param[in] V2Command Issued V2 Protocol command byte from the host
427 */
428 void ISPProtocol_WriteFuseLock(uint8_t V2Command)
429 {
430 struct
431 {
432 uint8_t WriteCommandBytes[4];
433 } Write_FuseLockSig_Params;
434
435 Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL);
436
437 Endpoint_ClearOUT();
438 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
439 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
440
441 /* Send the Fuse or Lock byte program commands as given by the host to the device */
442 for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
443 ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
444
445 Endpoint_Write_8(V2Command);
446 Endpoint_Write_8(STATUS_CMD_OK);
447 Endpoint_Write_8(STATUS_CMD_OK);
448 Endpoint_ClearIN();
449 }
450
451 /** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
452 void ISPProtocol_SPIMulti(void)
453 {
454 struct
455 {
456 uint8_t TxBytes;
457 uint8_t RxBytes;
458 uint8_t RxStartAddr;
459 uint8_t TxData[255];
460 } SPI_Multi_Params;
461
462 Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL);
463 Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL);
464
465 Endpoint_ClearOUT();
466 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
467 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
468
469 Endpoint_Write_8(CMD_SPI_MULTI);
470 Endpoint_Write_8(STATUS_CMD_OK);
471
472 uint8_t CurrTxPos = 0;
473 uint8_t CurrRxPos = 0;
474
475 /* Write out bytes to transmit until the start of the bytes to receive is met */
476 while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
477 {
478 if (CurrTxPos < SPI_Multi_Params.TxBytes)
479 ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
480 else
481 ISPTarget_SendByte(0);
482
483 CurrTxPos++;
484 }
485
486 /* Transmit remaining bytes with padding as needed, read in response bytes */
487 while (CurrRxPos < SPI_Multi_Params.RxBytes)
488 {
489 if (CurrTxPos < SPI_Multi_Params.TxBytes)
490 Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
491 else
492 Endpoint_Write_8(ISPTarget_ReceiveByte());
493
494 /* Check to see if we have filled the endpoint bank and need to send the packet */
495 if (!(Endpoint_IsReadWriteAllowed()))
496 {
497 Endpoint_ClearIN();
498 Endpoint_WaitUntilReady();
499 }
500
501 CurrRxPos++;
502 }
503
504 Endpoint_Write_8(STATUS_CMD_OK);
505
506 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
507 Endpoint_ClearIN();
508
509 /* Ensure last packet is a short packet to terminate the transfer */
510 if (IsEndpointFull)
511 {
512 Endpoint_WaitUntilReady();
513 Endpoint_ClearIN();
514 Endpoint_WaitUntilReady();
515 }
516 }
517
518 /** Blocking delay for a given number of milliseconds. This provides a simple wrapper around
519 * the avr-libc provided delay function, so that the delay function can be called with a
520 * constant value (to prevent run-time floating point operations being required).
521 *
522 * \param[in] DelayMS Number of milliseconds to delay for
523 */
524 void ISPProtocol_DelayMS(uint8_t DelayMS)
525 {
526 while (DelayMS-- && TimeoutTicksRemaining)
527 Delay_MS(1);
528 }
529
530 #endif
531
Imprint / Impressum