]> git.gir.st - tmk_keyboard.git/blob - protocol/lufa/LUFA-git/Projects/AVRISP-MKII/Lib/ISP/ISPTarget.c
Squashed 'tmk_core/' changes from caca2c0..dc0e46e
[tmk_keyboard.git] / protocol / lufa / LUFA-git / Projects / AVRISP-MKII / Lib / ISP / ISPTarget.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Target-related functions for the ISP Protocol decoder.
34 */
35
36 #include "ISPTarget.h"
37
38 #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
39
40 /** List of hardware SPI prescaler masks for possible AVRStudio ISP programming speeds.
41 *
42 * \hideinitializer
43 */
44 static const uint8_t SPIMaskFromSCKDuration[] PROGMEM =
45 {
46 #if (F_CPU == 8000000)
47 SPI_SPEED_FCPU_DIV_2, // AVRStudio = 8MHz SPI, Actual = 4MHz SPI
48 SPI_SPEED_FCPU_DIV_2, // AVRStudio = 4MHz SPI, Actual = 4MHz SPI
49 SPI_SPEED_FCPU_DIV_4, // AVRStudio = 2MHz SPI, Actual = 2MHz SPI
50 SPI_SPEED_FCPU_DIV_8, // AVRStudio = 1MHz SPI, Actual = 1MHz SPI
51 SPI_SPEED_FCPU_DIV_16, // AVRStudio = 500KHz SPI, Actual = 500KHz SPI
52 SPI_SPEED_FCPU_DIV_32, // AVRStudio = 250KHz SPI, Actual = 250KHz SPI
53 SPI_SPEED_FCPU_DIV_64, // AVRStudio = 125KHz SPI, Actual = 125KHz SPI
54 #elif (F_CPU == 16000000)
55 SPI_SPEED_FCPU_DIV_2, // AVRStudio = 8MHz SPI, Actual = 8MHz SPI
56 SPI_SPEED_FCPU_DIV_4, // AVRStudio = 4MHz SPI, Actual = 4MHz SPI
57 SPI_SPEED_FCPU_DIV_8, // AVRStudio = 2MHz SPI, Actual = 2MHz SPI
58 SPI_SPEED_FCPU_DIV_16, // AVRStudio = 1MHz SPI, Actual = 1MHz SPI
59 SPI_SPEED_FCPU_DIV_32, // AVRStudio = 500KHz SPI, Actual = 500KHz SPI
60 SPI_SPEED_FCPU_DIV_64, // AVRStudio = 250KHz SPI, Actual = 250KHz SPI
61 SPI_SPEED_FCPU_DIV_128 // AVRStudio = 125KHz SPI, Actual = 125KHz SPI
62 #else
63 #error No SPI prescaler masks for chosen F_CPU speed.
64 #endif
65 };
66
67 /** Lookup table to convert the slower ISP speeds into a compare value for the software SPI driver.
68 *
69 * \hideinitializer
70 */
71 static const uint16_t TimerCompareFromSCKDuration[] PROGMEM =
72 {
73 TIMER_COMP(96386), TIMER_COMP(89888), TIMER_COMP(84211), TIMER_COMP(79208), TIMER_COMP(74767),
74 TIMER_COMP(70797), TIMER_COMP(67227), TIMER_COMP(64000), TIMER_COMP(61069), TIMER_COMP(58395),
75 TIMER_COMP(55945), TIMER_COMP(51613), TIMER_COMP(49690), TIMER_COMP(47905), TIMER_COMP(46243),
76 TIMER_COMP(43244), TIMER_COMP(41885), TIMER_COMP(39409), TIMER_COMP(38278), TIMER_COMP(36200),
77 TIMER_COMP(34335), TIMER_COMP(32654), TIMER_COMP(31129), TIMER_COMP(29740), TIMER_COMP(28470),
78 TIMER_COMP(27304), TIMER_COMP(25724), TIMER_COMP(24768), TIMER_COMP(23461), TIMER_COMP(22285),
79 TIMER_COMP(21221), TIMER_COMP(20254), TIMER_COMP(19371), TIMER_COMP(18562), TIMER_COMP(17583),
80 TIMER_COMP(16914), TIMER_COMP(16097), TIMER_COMP(15356), TIMER_COMP(14520), TIMER_COMP(13914),
81 TIMER_COMP(13224), TIMER_COMP(12599), TIMER_COMP(12031), TIMER_COMP(11511), TIMER_COMP(10944),
82 TIMER_COMP(10431), TIMER_COMP(9963), TIMER_COMP(9468), TIMER_COMP(9081), TIMER_COMP(8612),
83 TIMER_COMP(8239), TIMER_COMP(7851), TIMER_COMP(7498), TIMER_COMP(7137), TIMER_COMP(6809),
84 TIMER_COMP(6478), TIMER_COMP(6178), TIMER_COMP(5879), TIMER_COMP(5607), TIMER_COMP(5359),
85 TIMER_COMP(5093), TIMER_COMP(4870), TIMER_COMP(4633), TIMER_COMP(4418), TIMER_COMP(4209),
86 TIMER_COMP(4019), TIMER_COMP(3823), TIMER_COMP(3645), TIMER_COMP(3474), TIMER_COMP(3310),
87 TIMER_COMP(3161), TIMER_COMP(3011), TIMER_COMP(2869), TIMER_COMP(2734), TIMER_COMP(2611),
88 TIMER_COMP(2484), TIMER_COMP(2369), TIMER_COMP(2257), TIMER_COMP(2152), TIMER_COMP(2052),
89 TIMER_COMP(1956), TIMER_COMP(1866), TIMER_COMP(1779), TIMER_COMP(1695), TIMER_COMP(1615),
90 TIMER_COMP(1539), TIMER_COMP(1468), TIMER_COMP(1398), TIMER_COMP(1333), TIMER_COMP(1271),
91 TIMER_COMP(1212), TIMER_COMP(1155), TIMER_COMP(1101), TIMER_COMP(1049), TIMER_COMP(1000),
92 TIMER_COMP(953), TIMER_COMP(909), TIMER_COMP(866), TIMER_COMP(826), TIMER_COMP(787),
93 TIMER_COMP(750), TIMER_COMP(715), TIMER_COMP(682), TIMER_COMP(650), TIMER_COMP(619),
94 TIMER_COMP(590), TIMER_COMP(563), TIMER_COMP(536), TIMER_COMP(511), TIMER_COMP(487),
95 TIMER_COMP(465), TIMER_COMP(443), TIMER_COMP(422), TIMER_COMP(402), TIMER_COMP(384),
96 TIMER_COMP(366), TIMER_COMP(349), TIMER_COMP(332), TIMER_COMP(317), TIMER_COMP(302),
97 TIMER_COMP(288), TIMER_COMP(274), TIMER_COMP(261), TIMER_COMP(249), TIMER_COMP(238),
98 TIMER_COMP(226), TIMER_COMP(216), TIMER_COMP(206), TIMER_COMP(196), TIMER_COMP(187),
99 TIMER_COMP(178), TIMER_COMP(170), TIMER_COMP(162), TIMER_COMP(154), TIMER_COMP(147),
100 TIMER_COMP(140), TIMER_COMP(134), TIMER_COMP(128), TIMER_COMP(122), TIMER_COMP(116),
101 TIMER_COMP(111), TIMER_COMP(105), TIMER_COMP(100), TIMER_COMP(95.4), TIMER_COMP(90.9),
102 TIMER_COMP(86.6), TIMER_COMP(82.6), TIMER_COMP(78.7), TIMER_COMP(75.0), TIMER_COMP(71.5),
103 TIMER_COMP(68.2), TIMER_COMP(65.0), TIMER_COMP(61.9), TIMER_COMP(59.0), TIMER_COMP(56.3),
104 TIMER_COMP(53.6), TIMER_COMP(51.1)
105 };
106
107 /** Currently selected SPI driver, either hardware (for fast ISP speeds) or software (for slower ISP speeds). */
108 bool HardwareSPIMode = true;
109
110 /** Software SPI data register for sending and receiving */
111 static volatile uint8_t SoftSPI_Data;
112
113 /** Number of bits left to transfer in the software SPI driver */
114 static volatile uint8_t SoftSPI_BitsRemaining;
115
116
117 /** ISR to handle software SPI transmission and reception */
118 ISR(TIMER1_COMPA_vect, ISR_BLOCK)
119 {
120 /* Check if rising edge (output next bit) or falling edge (read in next bit) */
121 if (!(PINB & (1 << 1)))
122 {
123 if (SoftSPI_Data & (1 << 7))
124 PORTB |= (1 << 2);
125 else
126 PORTB &= ~(1 << 2);
127 }
128 else
129 {
130 SoftSPI_Data <<= 1;
131
132 if (!(--SoftSPI_BitsRemaining))
133 {
134 TCCR1B = 0;
135 TIFR1 = (1 << OCF1A);
136 }
137
138 if (PINB & (1 << 3))
139 SoftSPI_Data |= (1 << 0);
140 }
141
142 /* Fast toggle of PORTB.1 via the PIN register (see datasheet) */
143 PINB |= (1 << 1);
144 }
145
146 /** Initializes the appropriate SPI driver (hardware or software, depending on the selected ISP speed) ready for
147 * communication with the attached target.
148 */
149 void ISPTarget_EnableTargetISP(void)
150 {
151 uint8_t SCKDuration = V2Params_GetParameterValue(PARAM_SCK_DURATION);
152
153 if (SCKDuration < sizeof(SPIMaskFromSCKDuration))
154 {
155 HardwareSPIMode = true;
156
157 SPI_Init(pgm_read_byte(&SPIMaskFromSCKDuration[SCKDuration]) | SPI_ORDER_MSB_FIRST |
158 SPI_SCK_LEAD_RISING | SPI_SAMPLE_LEADING | SPI_MODE_MASTER);
159 }
160 else
161 {
162 HardwareSPIMode = false;
163
164 DDRB |= ((1 << 1) | (1 << 2));
165 PORTB |= ((1 << 0) | (1 << 3));
166
167 ISPTarget_ConfigureSoftwareSPI(SCKDuration);
168 }
169 }
170
171 /** Shuts down the current selected SPI driver (hardware or software, depending on the selected ISP speed) so that no
172 * further communications can occur until the driver is re-initialized.
173 */
174 void ISPTarget_DisableTargetISP(void)
175 {
176 if (HardwareSPIMode)
177 {
178 SPI_Disable();
179 }
180 else
181 {
182 DDRB &= ~((1 << 1) | (1 << 2));
183 PORTB &= ~((1 << 0) | (1 << 3));
184
185 /* Must re-enable rescue clock once software ISP has exited, as the timer for the rescue clock is
186 * re-purposed for software SPI */
187 ISPTarget_ConfigureRescueClock();
188 }
189 }
190
191 /** Configures the AVR to produce a 4MHz rescue clock out of the OCR1A pin of the AVR, so
192 * that it can be fed into the XTAL1 pin of an AVR whose fuses have been mis-configured for
193 * an external clock rather than a crystal. When used, the ISP speed must be 125KHz for this
194 * functionality to work correctly.
195 */
196 void ISPTarget_ConfigureRescueClock(void)
197 {
198 #if defined(XCK_RESCUE_CLOCK_ENABLE)
199 /* Configure XCK as an output for the specified AVR model */
200 DDRD |= (1 << 5);
201
202 /* Start USART to generate a 4MHz clock on the XCK pin */
203 UBRR1 = ((F_CPU / 2 / ISP_RESCUE_CLOCK_SPEED) - 1);
204 UCSR1B = (1 << TXEN1);
205 UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
206 #else
207 /* Configure OCR1A as an output for the specified AVR model */
208 #if defined(USB_SERIES_2_AVR)
209 DDRC |= (1 << 6);
210 #else
211 DDRB |= (1 << 5);
212 #endif
213
214 /* Start Timer 1 to generate a 4MHz clock on the OCR1A pin */
215 TIMSK1 = 0;
216 TCNT1 = 0;
217 OCR1A = ((F_CPU / 2 / ISP_RESCUE_CLOCK_SPEED) - 1);
218 TCCR1A = (1 << COM1A0);
219 TCCR1B = ((1 << WGM12) | (1 << CS10));
220 #endif
221 }
222
223 /** Configures the AVR's timer ready to produce software SPI for the slower ISP speeds that
224 * cannot be obtained when using the AVR's hardware SPI module.
225 *
226 * \param[in] SCKDuration Duration of the desired software ISP SCK clock
227 */
228 void ISPTarget_ConfigureSoftwareSPI(const uint8_t SCKDuration)
229 {
230 /* Configure Timer 1 for software SPI using the specified SCK duration */
231 TIMSK1 = (1 << OCIE1A);
232 TCNT1 = 0;
233 OCR1A = pgm_read_word(&TimerCompareFromSCKDuration[SCKDuration - sizeof(SPIMaskFromSCKDuration)]);
234 TCCR1A = 0;
235 TCCR1B = 0;
236 }
237
238 /** Sends and receives a single byte of data to and from the attached target via software SPI.
239 *
240 * \param[in] Byte Byte of data to send to the attached target
241 *
242 * \return Received byte of data from the attached target
243 */
244 uint8_t ISPTarget_TransferSoftSPIByte(const uint8_t Byte)
245 {
246 SoftSPI_Data = Byte;
247 SoftSPI_BitsRemaining = 8;
248
249 /* Set initial MOSI pin state according to the byte to be transferred */
250 if (SoftSPI_Data & (1 << 7))
251 PORTB |= (1 << 2);
252 else
253 PORTB &= ~(1 << 2);
254
255 TCNT1 = 0;
256 TCCR1B = ((1 << WGM12) | (1 << CS11));
257 while (SoftSPI_BitsRemaining && TimeoutTicksRemaining);
258 TCCR1B = 0;
259
260 return SoftSPI_Data;
261 }
262
263 /** Asserts or deasserts the target's reset line, using the correct polarity as set by the host using a SET PARAM command.
264 * When not asserted, the line is tristated so as not to interfere with normal device operation.
265 *
266 * \param[in] ResetTarget Boolean true when the target should be held in reset, \c false otherwise
267 */
268 void ISPTarget_ChangeTargetResetLine(const bool ResetTarget)
269 {
270 if (ResetTarget)
271 {
272 AUX_LINE_DDR |= AUX_LINE_MASK;
273
274 if (!(V2Params_GetParameterValue(PARAM_RESET_POLARITY)))
275 AUX_LINE_PORT |= AUX_LINE_MASK;
276 else
277 AUX_LINE_PORT &= ~AUX_LINE_MASK;
278 }
279 else
280 {
281 AUX_LINE_DDR &= ~AUX_LINE_MASK;
282 AUX_LINE_PORT &= ~AUX_LINE_MASK;
283 }
284 }
285
286 /** Waits until the target has completed the last operation, by continuously polling the device's
287 * BUSY flag until it is cleared, or until the command timeout period has expired.
288 *
289 * \return V2 Protocol status \ref STATUS_CMD_OK if the no timeout occurred, \ref STATUS_RDY_BSY_TOUT otherwise
290 */
291 uint8_t ISPTarget_WaitWhileTargetBusy(void)
292 {
293 do
294 {
295 ISPTarget_SendByte(0xF0);
296 ISPTarget_SendByte(0x00);
297 ISPTarget_SendByte(0x00);
298 }
299 while ((ISPTarget_ReceiveByte() & 0x01) && TimeoutTicksRemaining);
300
301 return (TimeoutTicksRemaining > 0) ? STATUS_CMD_OK : STATUS_RDY_BSY_TOUT;
302 }
303
304 /** Sends a low-level LOAD EXTENDED ADDRESS command to the target, for addressing of memory beyond the
305 * 64KB boundary. This sends the command with the correct address as indicated by the current address
306 * pointer variable set by the host when a SET ADDRESS command is issued.
307 */
308 void ISPTarget_LoadExtendedAddress(void)
309 {
310 ISPTarget_SendByte(LOAD_EXTENDED_ADDRESS_CMD);
311 ISPTarget_SendByte(0x00);
312 ISPTarget_SendByte(CurrentAddress >> 16);
313 ISPTarget_SendByte(0x00);
314 }
315
316 /** Waits until the last issued target memory programming command has completed, via the check mode given and using
317 * the given parameters.
318 *
319 * \param[in] ProgrammingMode Programming mode used and completion check to use, a mask of \c PROG_MODE_* constants
320 * \param[in] PollAddress Memory address to poll for completion if polling check mode used
321 * \param[in] PollValue Poll value to check against if polling check mode used
322 * \param[in] DelayMS Milliseconds to delay before returning if delay check mode used
323 * \param[in] ReadMemCommand Device low-level READ MEMORY command to send if value check mode used
324 *
325 * \return V2 Protocol status \ref STATUS_CMD_OK if the no timeout occurred, \ref STATUS_RDY_BSY_TOUT or
326 * \ref STATUS_CMD_TOUT otherwise
327 */
328 uint8_t ISPTarget_WaitForProgComplete(const uint8_t ProgrammingMode,
329 const uint16_t PollAddress,
330 const uint8_t PollValue,
331 const uint8_t DelayMS,
332 const uint8_t ReadMemCommand)
333 {
334 uint8_t ProgrammingStatus = STATUS_CMD_OK;
335
336 /* Determine method of Programming Complete check */
337 switch (ProgrammingMode & ~(PROG_MODE_PAGED_WRITES_MASK | PROG_MODE_COMMIT_PAGE_MASK))
338 {
339 case PROG_MODE_WORD_TIMEDELAY_MASK:
340 case PROG_MODE_PAGED_TIMEDELAY_MASK:
341 ISPProtocol_DelayMS(DelayMS);
342 break;
343 case PROG_MODE_WORD_VALUE_MASK:
344 case PROG_MODE_PAGED_VALUE_MASK:
345 do
346 {
347 ISPTarget_SendByte(ReadMemCommand);
348 ISPTarget_SendByte(PollAddress >> 8);
349 ISPTarget_SendByte(PollAddress & 0xFF);
350 }
351 while ((ISPTarget_TransferByte(0x00) == PollValue) && TimeoutTicksRemaining);
352
353 if (!(TimeoutTicksRemaining))
354 ProgrammingStatus = STATUS_CMD_TOUT;
355
356 break;
357 case PROG_MODE_WORD_READYBUSY_MASK:
358 case PROG_MODE_PAGED_READYBUSY_MASK:
359 ProgrammingStatus = ISPTarget_WaitWhileTargetBusy();
360 break;
361 }
362
363 /* Program complete - reset timeout */
364 TimeoutTicksRemaining = COMMAND_TIMEOUT_TICKS;
365
366 return ProgrammingStatus;
367 }
368
369 #endif
370
Imprint / Impressum